PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2019.1.101eng

UDC 632.7:632.9:631.95

Acknowledgements:
This work was carried out in accordance with the State Task No. 075-00376-19-00 of the Ministry of Science and Higher Education of the Russian Federation in the framework of the researches on subject No. 0686-2019-0009

 

COMPATIBILITY OF ENTOMOPHAGES WITH BIOLOGICAL
AND BIORATIONAL PESTICIDES

I.S. Agas'eva, M.V. Nefedova, E.V. Fedorenko, A.O. Mkrtchyan,
A.S. Nastasii, V.Ya. Ismailov

All-Russian Research Institute of Biological Plant Protection, PO box 39, Krasnodar, 350039 Russia, e-mail agasieva5@yandex.ru, dollkaSneba@yandex.ru, ms.fedor1960@mail.ru, mialusker22@gmail.com, nastasy.anton@yandex.ru, vlyaism@yandex.ru (✉ corresponding author)

ORCID:
Agas'eva I.S. orcid.org/0000-0002-1216-1106
Mkrtchyan A.O. orcid.org/0000-0002-3252-9780
Nefedova M.V. orcid.org/0000-0001-5390-233X
Nastasii A.S. orcid.org/0000-0001-8324-0058
Fedorenko E.V. orcid.org/0000-0003-4411-626X
Ismailov V.Ya. orcid.org/0000-0002-6713-0059

Received June 5, 2018

 

Severe adverse effects of chemical pesticides have driven demand for ecologically friendly technologies of plant growing with alternative pest control tactics. Traditional insecticides cause massive death of predatory ground beetles, bedbugs, coccinellids, lizards, flies and tachinid flies, parasitic trichogrammatids, ichneumonids, braconids and other useful species. Harmonized biological and chemical controls are becoming more relevant, which should include the use of beneficial entomofauna. This necessitates more data on sensitivity of entomophages to biologicals, biorational pesticides (i.e. natural substances and their synthetic analogues) and other selective chemistries. In this work, for the first time, we determined laboratory and field toxicity of several Russian and foreign conventional biologicals and chemicals for beneficial entomofauna of corn, potato and apple-tree agrocenoses. The originality of this study lies in its focus on searching commonly used biopesticides which can be integrated with entomophages in organic farming technology. The obtained data indicate that biorational insecticides Fitoverm® EC (emulsion concentrate) (Pharmbiomed, Russia, 1.3 l/ha), Vertimek® EC (Syngenta AG, Switzerland, 1.0 l/ha) and Atabron® SC (suspension concentrate) (ISK Biosciences, Belgium, 0.75 l/ha) are highly effective against harmful lepidopterans and aphids on corn, soy and pea crops without toxic effect on the massively used entomophagous Habrobracon hebetor Say and Aphidius matricaria Hal. Our findings also indicate effectiveness of combination of predatory bugs podisus (Podisus maculiventris Say) and perillus (Perillus bioculatus Fabr.) with biologicals against Colorado beetle on solanaceous crops. In using Bitoxybacillin® P (powder) (Sibbiopharm, Russia, 4 kg/ha) and Fitoverm® EC (1.3 l/ha), the survival rates of P. masculentris imagoes were 88 % and 82 %, respectively, with 64 % for older larvae. When using the same pesticides, the survival rates of P. bioculatus imagoes were 97 % and 91 %, respectively, with 58 % and 52 % for fourth- to fifth-instar larvae. Fitoverm® at 1 l/ha rate recommended against aphids does not affect the viability of the aphido-phages Cycloneda sangvinea Mul. and Harmonia axyridis Pallas on maize, vegetable pea and apple, and allows for survival of 85 % adult beetles C. sangvinea and of 88 % Asian ladybeetles H. ax-yridis. These data can be used in protocols for co-application of biologicals, biorational preparations and entomophages in organic and ecological farming to effectively control pests of maize (cotton moth, corn stalk moth, corn and cereal aphids), potatoes (Colorado potato beetle, potato aphids), peas (leguminous aphis), and apple trees (apple moth, Apple green aphid).

Keywords: biological preparations, entomopathogenic, insect sensitivity to pesticides, Habrobracon hebetor Say, Aphidius matricaria Hal., Perillus bioculatus Fabr., Podisus maculiventris Say, Cycloneda sangvinea Mul., Harmonia axyridis Pallas.

 

REFERENCES

  1. Rigby D., Cáceres D. Organic farming and the sustainability of agricultural systems. Agricultural Systems, 2001, 68(1): 21-40 CrossRef
  2. Bengtsson J., Ahnstrom J., Weibull A.C. The effects of organic agriculture on biodiversity and abundance: a meta-analysis. Journal of Applied Ecology, 2005, 42(2): 261-269 CrossRef
  3. Darnhofer I., Lindenthal T., Bartel-Kratochvil R., Zollitsch W. Conventionalisation of organic farming practices: from structural criteria towards an assessment based on organic principles: a review. Agron. Sustain. Dev., 2011, 30(1): 67-81 CrossRef
  4. Ratnadass A., Fernandes P., Avelino J., Habib R. Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron. Sustain. Dev., 2012, 32(1): 273-303 CrossRef
  5. Malézieux E. Designing cropping systems from nature. Agron. Sustain. Dev., 2012, 32(1): 15-29 CrossRef
  6. Badgley C., Moghtader J., Quintero E., Zakem E., Chappell M.J., Avilés-Vázquez K., Samulon A., Perfecto I. Organic agriculture and the global food supply. Renewable Agriculture and Food Systems, 2007, 22(2): 86-108 CrossRef
  7. Argyropoulos C., Tsiafouli M.A., Sgardelis S.P., Pantis J.D. Organic farming without organic products. Land Use Policy, 2013, 32: 324-328 CrossRef
  8. Agas'eva I.S., Ismailov V.Ya. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta, 2016, 58: 67-74 (in Russ.).
  9. Vazquez L.L., Perez N. El control biológico integrado al manejo territorial de plagas de insectos en Cuba. Agroecología, 2017, 12(1): 39-46.
  10. Ismailov V.Ya., Agas'eva I.S., Kil' V.I., Fedorenko E.V., Besedina E.N., Nefedova M.V. Nauka Kubani, 2017, 4: 26-33 (in Russ.).
  11. Agas'eva I.S., Nefedova M.V., Fedorenko E.V., Umarova A.O. Mezhdunarodnyi nauchno-issledovatel'skii zhurnal, 2017, 7(61), ch. 2: 6-8 CrossRef (in Russ.).
  12. Kashutina E.V., Ignat'eva T.N., Kheishkho I.V. Subtropicheskoe i dekorativnoe sadovodstvo, 2013, 48: 231-236 (in Russ.).
  13. Prishchepenko E.A., Zanina L.N. Vestnik GBU Nauchnyi tsentr bezopasnosti zhiznedeyatel'nosti, 2015, 1(23): 121-125 (in Russ.).
  14. Agas'eva I.S., Ismailov V.Ya. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta, 2017, 65: 53-59 CrossRef (in Russ.).
  15. Terekhov V.I., Ismailov V.Ya., Volkova G.V., Begunov I.I., Kovalenkov V.G., Tyurina N.D., Kazadaeva S.V., Fedorenkov V.I. Doklady Rossiiskoi akademii sel'skokhozyaistvennykh nauk, 2006, 6: 16-18 (in Russ.).
  16. Kovalenkov V.G. Agrokhimiya, 2007, 8: 48-57 (in Russ.).
  17. Bass C., Denholm I., Williamson M.S., Nauen R. The global status of insect resistance to neonicotinoid insecticides. Pesticide Biochemistry and Physiology, 2015, 121: 78-87 CrossRef
  18. Rane R.V., Walsh T.K., Pearce S.L., Jermiin L.S., Gordon K.H., Richards S., Oakeshott J.G. Are feeding preferences and insecticide resistance associated with the size of detoxifying enzyme families in insect herbivores? Current Opinion in Insect Science, 2016, 13: 70-76 CrossRef
  19. Listopadova E.S., Nefedova M.V., Agas'eva I.S. Mezhdunarodnyi nauchno-issledovatel'skii zhurnal, 2014, 2(21), ch. 2: 10-11 (in Russ.).
  20. Collier R.H., Finch S., Davies G. Pest insect control in organically-produced crops of field vegetables. Mededelingen (Rijksuniversiteit te Gent. Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen), 2001, 66(2a): 259-267.
  21. Berestetskii A.O. Zashchita i karantin rastenii, 2017, 8: 9-1 (in Russ.).
  22. Cahill J.F., Elle E., Smith G.R., Shore B.H. Disruption of belowground mutualism alters interactions between plants and their floral visitors. Ecology, 2008, 89(7): 1791-1801 CrossRef
  23. Carmo E.L., Bueno A., Bueno R.C.O., Vieira S.S., Gobbi A.L., Vasco F.R. Seletividade de diferentes agrotóxicos usados na cultura da soja ao parasitoide de ovos Telenomus remus. Ciência Rural, 2009, 39(8): 2293-2300 CrossRef
  24. Gruzdev G.S., Zinchenko V.A., Kalinin V.A., Slovtsov R.N., Gruzdev L.G. Khimicheskaya zashchita rastenii /Pod redaktsiei G.S. Gruzdeva [Chemicals for plant protection. G.S. Gruzdev (ed.)]. Moscow, 1987 (in Russ.).
  25. Dolzhenko T.V., Dolzhenko O.V. AGRO XXI, 2013, 4-6: 28-30 (in Russ.).
  26. Dolzhenko T.V., Kozlova E.G., Dolzhenko O.V. Rossiiskaya sel'skokhozyaistvennaya nauka, 2016, 2-3: 21-23 (in Russ.).
  27. Matsuda K., Buckingham S.D., Kleier D., Rauh J.J., Grauso M., Sattelle D.B. Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends in Pharmacological Sciences, 2001, 22(11): 573-580 CrossRef
  28. Tomizawa M., Casida J.E. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annual Review of Entomology, 2003, 48: 339-364 CrossRef
  29. Dolzhenko T.V., Belousova M.E., Shokhina M.V. Sadovodstvo i vinogradarstvo, 2016, 6: 29-35 CrossRef (in Russ.).
  30. Dospekhov B.A. Metodika polevogo opyta [Methods of field trials]. Moscow, 1985 (in Russ.).
  31. Amarasekarea K.G., Shearer P.W., Mills N.J. Testing the selectivity of pesticide effects on natural enemies in laboratory bioassays. Biological Control, 2016, 102(C): 7-16 CrossRef
  32. Temreshev I.I., Esenbekova P.A., Sagitov A.O., Mukhamadiev N.S., Sarsenbaeva G.B., Ageenko A.V., Homziak J. Evaluation of the effect of locally produced biological pesticide (AқKөbelek™) on biodiversity and abundance of beneficial insects in four forage crops in the Almaty region of Kazakhstan. International Journal of Environment, Agriculture and Biotechnology (IJEAB), 2018, 3(1): 072-091 CrossRef

back