doi: 10.15389/agrobiology.2018.1.170eng

UDC 579.64:632.4.01/.08:575.22

Acknowledgements:
Supported by Russian Foundation for Basic Research (project ¹ 15-29-02751 ofi_m)

 

APPLICATION OF SSR MARKERS FOR STUDYOF GENETIC
DIVERSITY OF Venturia inaequalis IN THE DIFFERENT TYPES
OF ORCHARDS IN THE NORTH CAUCASIAN REGION

I.I. Suprun1, A.I. Nasonov1, S.V. Tokmakov1, O.N. Barsukova2,
G.V. Yakuba1

1North Caucasian Federal Research Center of Horticulture, Viticulture, Wine-making, Federal Agency for Scientific Organizations, 39, ul. 40-letiya Pobedy, Krasnodar, 350901 Russia, e-mail kubansad@kubannet.ru, supruni@mail.ru (✉ corresponding author);
2Maikop Experiment Breeding Station, Branch of Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Federal Agency for Scientific Organizations, pos. Podgornii, Maikop Region, Republic of Adygeya, 385746 Russia,
e-mail barsukova_37@mail.ru

ORCID:
Suprun I.I. orcid.org/0000-0003-0355-8395
Barsukova O.N. orcid.org/0000-0003-1694-7146
Nasonov A.I. orcid.org/0000-0002-4927-2192
Yakuba G.V. orcid.org/0000-0001-7735-960X
Tokmakov S.V. orcid.org/0000-0002-2092-7757

Received August 9, 2016

 

Apple scab caused by ascomycete fungus Venturia inaequalis (Cooke) G. Winter is one of the most harmful diseases of apple trees, which leads to significant economic losses in apple production in the world. North Caucasus is a region with climatic conditions favorable for V. inaequalis. Therefore, the creation of resistant varieties is an important target for apple breeding. Study of the genetic diversity of the pathogen is an integral part of both science-based apple breeding programs and systems of protection against the pathogen. This paper is the first report on SSR analysis of genetic diversity of V. inaequalis strains collected in apple orchards that differ in structure and are located geographically remotely in the Krasnodar Territory and the Republic of Adygea. To study the genetic polymorphism of the phytopathogen populations, two industrial gardens and a collection of Malus orientalis were surveyed in the Kuban and Caucasus foothill agro-ecological zones of the region. The genetic heterogeneity of the host plant populations at the sampling sites varied significantly, since the industrial orchards were single-cultivar plantations of the apple varieties Gala, Renet Simirenko, Golden Delicious, and Champion while in the collection garden the accessions originated from different parts of the M. orientalis natural area. Eight SSR markers used were 1aac4f, Viga7/116, Vitc1/2, Vitcca7/P, Vicacg8/42, Viga3/z, 1tcla, Vitc2/D. The number of alleles per locus revealed in SSR analysis of 36 monosporic isolates of V. inaequalis was 4 for 1aac4f, 6 for Vitc2/D, 10 for Viga7/116 and Vicacg8/42, 11 for Vitcca7/P, and 12 for Vitc1/2 and 1tcla. Upon the whole, there were 4 (1aac4f) to 12 alleles (Vitc1/2, 1tcla) for polymorphic markers, and only one allele was detected for marker Viga3/z. Despite the fact that some markers showed various distributions of identified alleles in all subpopulations, these differences were not sufficient to differentiate the subpopulations. UPGMA-analysis showed no relationship between clusterization and the geographical origin of the isolates, indicating low inter-population differences. This can indicate a free gene flow between the populations due to human activity as they are too distant from each other to allow natural transfer of spores. The obtained results suggest significant genetic diversity in the investigated set of monospore isolates. Genetic diversity was higher in the V. inaequalis population from the M. orientalis collection, indicating the effect of plant population heterogeneity on genetic polymorphism of the pathogen. In our opinion, the differences in polymorphism for some SSR markers, when compared our data and the results reported by other researchers’ for European populations of V. inaequalis, could be due to genetic differences in populations of V. inaequalis from North Caucasus region and the European populations.

Keywords: apple scab, Venturia inaequalis, genetic diversity, SSR-markers, allele polymorphism, North Caucasus.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. MacHardy W.E. Apple scab: biology, epidemiology, and management. The American Phytopathological Society, St. Paul, MN, 1996.
  2. Nasonov A. I., Suprun I.I. Mikologiya i fitopatologiya, 2015, 49(5): 275-285 (in Russ.).
  3. Sedov E.N., Zhdanov V.V., Serova Z.M., Makarkina M.A. Apple breeding for scab resistance as a development of N.I. Vavilov’s and I.V. Michurin’s ideas. Agricultural Biology, 2013, 1: 42-52 (in Russ.).
  4. Fedorova R.N. Parsha yabloni [Scab of apple trees]. Leningrad, 1977 (in Russ.).
  5. Barsukova O.N. Mikologiya i fitopatologiya, 1985, 19(6): 499-502 (in Russ.).
  6. Barsukova O.N. Mikologiya i fitopatologiya, 1983, 17(5): 395-403 (in Russ.).
  7. Dorozhkin N.A., Bondar' L.V., Konovalova N.A. Mikologiya i fitopatologiya, 1979, 13(5): 401-404 (in Russ.).
  8. Tsikaridze O.N., Turtseladze Z.R., Lezhava I.L., Mikaberidze M.S. Soobshcheniya AN GSSR, 1983, 3(1): 101-104 (in Russ.).
  9. Zhdanov V.V., Sedov E.N. Selektsiya yabloni na ustoichivost' k parshe [Breeding apple trees for resistance to scab].  Tula, 1991 (in Russ.).
  10. Tenzer I., Degli-Ivanissevich S., Morgante M., Gessler C. Identification of microsatellite markers and their application to population genetics of Venturia inaequalis. Phytopathology, 1999, 89(9): 748-753.
  11. Tenzer I., Gessler C. Subdivision and genetic structure of four populations of Venturia inaequalis in Switzerland. Eur. J. Plant Pathol., 1997, 103(6): 565-571.
  12. Gladieux P., Zhang X.G., Afoufa-Bastien D., Sanhueza R. V., Sbaghi M., Le Cam B. On the origin and spread of the scab disease of apple: out of Sentral Asia. PLoS ONE, 2008, 3(1): 1455 CrossRef
  13. Gladieux P., Zhang X.G., Roldan-Ruiz I.R., Caffier V., Leroy T., Devaux M., Glabeke S.V., Coart E., Cam B.L. Evolution of the population structure of Venturia inaequalis, the apple scab fungus, associated with the domestication of its host. Mol. Ecol., 2010, 19(4): 658-674 CrossRef
  14. Xu X.-M., Yang J.-R., Thakur V., Roberts A.L., Barbara D.J. Population variation of apple scab (Venturia inaequalis) isolates from Asia and Europe. Plant Dis., 2008, 92: 247-252 CrossRef
  15. Xu X., Yang J., Thakur V., Roberts A., Barbara D.J. Population variation of apple scab (Venturia inaequalis) within mixed orchards in the UK. Eur. J. Plant Pathol., 2013, 135(1): 97-104 CrossRef
  16. Khajuria Y.P., Kaul S., Dhar M.K. Molecular characterization of Venturia inaequalis causing apple scab in Kashmir. Open Access Scientific Reports, 2012, 1: 339 CrossRef
  17. Padder B.A., Sofi T.A., Ahmad M., Shah M.-Ul-D., Hamid A., Saleem S., Ahanger F.A. Virulence and molecular diversity of Venturia inaequalis in commercial apple growing regions in Kashmir. J. Phytopathol., 2013, 161: 271-279 CrossRef
  18. Leroy T., Lemaire C., Dunemann F., Le Cam B.  The genetic structure of a Venturia inaequalis population in a heterogeneous host population composed of different Malus species. BMC Evol. Biol., 2013, 13(1): 64 CrossRef
  19. Nasonov A.I., Yakuba G.V., Suprun I.I. Mikologiya i fitopatologiya, 2016, 50(2): 131-132 (in Russ.).
  20. Smol'yakova V.M., Yakuba G.V. Diagnostika, uchet i prognoz parshi yabloni na Severnom Kavkaze. Nauchno-metodicheskie rekomendatsii [Apple scab detection, records and forecasting in the North Caucasus. Scientific and methodical recommendations]. Krasnodar, 2003 (in Russ.).
  21. Tepper E.Z., Shil'nikova V.K., Pereverzeva G.I. Praktikum po mikrobiologii [Workshop on microbiology]. Moscow, 1979 (in Russ.).
  22. Bilai V.I. Metody eksperimental'noi mikologii [Methods of experimental mycology]. Kiev, 1982 (in Russ.).
  23. Cenis J.L. Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Res., 1992, 20: 2380. 
  24. Guérin F., Franck P., Loiseau A., Devaux M., Le Cam B. Isolation of 21 new polymorphic microsatellite loci in the phytopathogenic fungus Venturia inaequalis. Mol. Ecol. Notes, 2004, 4(2): 268-270 CrossRef
  25. Hammer O., Harper D.A.T., Ryan P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 2001, 4(1): 9.
  26. Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research — an update. Bioinformatics, 2012, 28(19): 2537-2539 CrossRef
  27. Nagy S., Poczai P., Cernák I., Gorji AM., Heged?s G., Taller J. PIC calc: an online program to calculate polymorphic information content for molecular genetic studies. Biochem. Genet., 2012, 50: 670-672 CrossRef
  28. D'yakov Yu.T. Populyatsionnaya biologiya fitopatogennykh gribov [Population biology of phytopathogenic fungi]. Moscow, 1998 (in Russ.).

back