doi: 10.15389/agrobiology.2018.1.111eng

UDC 635.21:632.3.01/.08:57.08

 

METHODS OF LABORATORY ASSESSMENT OF POTATO
CULTIVARS FOR RESISTANCE TO BACTERIAL
BLACKLEG AND TUBER SOFT ROT (review)

N.V. Statsyuk, M.A. Kuznetsova

All-Russian Research Institute of Phytopathology, Federal Agency for Scientific Organizations, 5, ul. Institute, pos. Bol’shie Vyazemy, Odintsovskii Region, Moscow Province, 143050 Russia, e-mail nataafg@gmail.com (✉ corresponding author), kuznetsova@vniif.ru

ORCID:
Statsyuk N.V. orcid.org/0000-0001-6159-148X
Kuznetsova M.A orcid.org/0000-0002-9880-5995

Received March 7, 2017

 

Bacterial blackleg and soft rot of potato caused by Pectobacterium carotovorum subsp. carotovorum, P. atrosepticum, and Dickeya spp. are among the most harmful diseases of potato. Average annual yield losses of potato caused by these bacteria make 10-15 %, but during epiphytoties they may exceed 50 %. Existing commercial potato cultivars do not possess high resistance to these diseases, since the most of current breeding programs do not consider this trait as a priority one. However, in recent years, global potato losses caused by blackleg and soft rot significantly increased that provided a growing demand for resistant cultivars and also for efficient methods for laboratory assessment of breeding material and new cultivars and hybrids for their resistance to these diseases. Weak correlation between the resistance of potato plants to the blackleg and soft rot results in the need of a parallel assessment for each of these two traits (R. Czajkowski et al., 2011). The choice of a preferable assessment method depends on the purpose of a study and the availability of biological material and required equipment and facilities. In large breeding centers, the assessment of potato resistance to the blackleg may be performed in vitro using potato explants. This approach is characterized by good reproducibility and reliability and provides a possibility for rapid large-scale production of revealed resistant genotypes (I. Hudák et al., 2006). If tested plants are planned to be used in further studies, then the detached leaf assay should be chosen (A. Sima et al., 2015). Results of this assay are usually in agreement with the results of field resistance assessment. The assay is preferable for a large-scale screening of resistance donors among wild Solanum species or transgenic potato lines. Breeders, who work with true potato seeds and mini-, micro-, and usual tubers, can use the method for potato resistance assessment under controlled conditions (V.S. Bisht et al., 1993). Tuber resistance to soft bacterial rot can be assessed using the vacuum infiltration method (M. Koppel, 1993) or the method of tuber or slice inoculation under anaerobic (R.A. Bain et al., 1988) or aerobic (I. Hudák et al., 2009) conditions. For aerobic conditions, the assessment may be carried out using whole tubers or their slices; in the last case, the duration of the experiment is significantly reduced (K.S. Tseng et al., 1990). The assessment criteria include the size of tissue necroses in the point of inoculation, weight or volume of affected tissues, and the ratio between the weights of healthy and affected tissues or between the areas of affected and healthy tuber surface. The choice of an assay and an assessment criterion depends on the purpose of the study and available resources. Comparison of results obtained by different methods may be incorrect. Planning and implementation of experiments on the assessment of tuber resistance to soft rot requires a standardization of some factors influencing on the final results; non-observance of this condition will make a comparison of obtained results impossible. Such crucial factors include the species of the inoculum, temperature of tuber tissues and bacterial suspension during inoculation stage, temperature of incubation after inoculation, and the point of inoculation or the part of tuber from which a slice was obtained. In the case of assessment of potato resistance to blackleg, the study of such factors was not conducted. This paper reviews in details advantages and disadvantages of the described approaches and factors and conditions able to influence on the results of assessment and on the possibility to compare results obtained in different experiments.

Keywords: potato, bacterial diseases, Pectobacterium carotovorum subsp. carotovorum, Pectobacterium atrosepticum, Dickeya spp., resistance assessment, bacterial blackleg, soft rot.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Torikov V.E., Bogomaz O.A. Vestnik Bryanskoi gosudarstvennoi sel'skokhozyaistvennoi akademii, 2008, 4: 53-59 (in Russ.).
  2. Knyazev B.M., Dzagova D.A. Zernovoe khozyaistvo, 2004, 4: 8-9 (in Russ.).
  3. Filippov A.V. Zashchita i karantin rastenii, 2012, 5: 61-88 (in Russ.).
  4. Lazarev A.M., Khyutti A.V. O bakteriozakh kartofelya. Sel'skokhozyaistvennye vesti, 2016, 1. Available https://agri-news.ru/zhurnal/2016/12016/zashhita-rastenij/o-bakteriozax-kartofelya.html. Accessed February 04, 2018 (in Russ.).
  5. Stead D. Bacterial diseases of potato: relevance to in vitro potato seed production. Potato Res., 1999, 42(3): 449-456 CrossRef
  6. Anisimov B.V., Belov G.L., Varitsev Yu.A., Elanskii S.N., Zhuromskii G.K., Zavriev S.K., Zeiruk V.N., Ivanyuk V.G., Kuznetsova M.A., Plyakhnevich M.P., Pshechenkov K.A., Simakov E.A., Sklyarova N.P., Stashevski Z., Uskov A.I., Yashina I.M. Zashchita kartofelya ot boleznei, vreditelei i sornyakov [Protection of potatoes from diseases, pests and weeds]. Moscow, 2009 (in Russ.).
  7. Ignatov A.N. Zashchita kartofelya, 2014, 2: 53-57 (in Russ.).
  8. De Boer S.H., Li X., Ward L.J. Pectobacterium spp. associated with bacterial stem rot syndrome of potato in Canada. Phytopathology, 2012, 102(10): 937-947 CrossRef
  9. Hauben L., Moore E.R.B., Vauterin L., Steenackers M., Mergaert J., Verdonck L., Swings J. Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst. Appl. Microbiol., 1998, 21(3): 384-397 CrossRef
  10. Gardan L., Gouy C., Christen R., Samson R. Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int. J. Syst. Evol. Microbiol., 2003, 53: 381-391 CrossRef
  11. Samson R., Legendre J.B., Christen R., Fischer-Le Saux M., Achouak W., Gardan L. Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int. J. Syst. Evol. Microbiol., 2005, 55(4): 1415-27 CrossRef
  12. Tominaga T., Ogasawara K. Bacterial stem rot of potato caused by Erwinia chrysanthemi. Japanese Journal of Phytopathology, 1979, 45(4): 474-477 CrossRef
  13. Cother E.J. Bacterial seed tuber decay in irrigated sandy soils of New South Wales. Potato Res., 1980, 23(1): 75-84 CrossRef
  14. Lumb V.M., Perombelon M.C.M., Zutra D. Studies of a wilt disease of the potato plant in Israel caused by Erwinia chrysanthemi. Plant Pathol., 1986, 35(2): 196-202 CrossRef
  15. Samson R., Foutier F., Sailly M., Jouan B. Caracterisation des Erwinia chrysanthemi isolees de Solanum tuberosum et d’autres plantes-hotes selon les biovars et serogroupes. EPPO Bulletin, 1987, 17(1): 11-16 CrossRef
  16. Serfontein S., Logan C., Swanepoel A.E., Boelema B.H., Theron D.J. A potato wilt disease in South Africa caused by Erwinia carotovora subspecies carotovora and E. chyrsanthemi. Plant Pathol., 1991, 40(3): 382-386 CrossRef
  17. Toth I.K., Van Der Wolf J.M., Saddler G., Lojkowska E., Helias V., Pirhonen M., Tsror L., Elphinstone J.G. Dickeya species: an emerging problem for potato production in Europe. Plant Pathol., 2011, 60(3): 385-399 CrossRef
  18. Degefu Y., Potrykus M., Golanowska M., Virtanen E., Lojkowska E. A new clade of Dickeya spp. plays a major role in potato blackleg outbreaks in North Finland. Ann. Appl. Biol., 2013, 162: 231-241 CrossRef
  19. van der Wolf J.M., Nijhuis E.H., Kowalewska M.J., Saddler G.S., Parkinson N., Elphinstone J.G., Pritchard L., Toth I.K., Lojkowska E., Potrykus M., Waleron M., de Vos P., Cleenwerck I., Pirhonen M., Garlant L., Hélias V., Pothier J.F., Pflüger V., Duffy B., Tsror L., Manulis S. Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum tuberosum). Int. J. Syst. Evol. Microbiol., 2014, 64: 768-774 CrossRef
  20. Palacio-Bielsa A., Cambra M.A., Lopez M.M. Characterisation of potato isolates of Dickeya chrysanthemi in Spain by a microtitre system for biovar determination. Ann. Appl. Biol., 2006, 148(2): 157-164 CrossRef
  21. Czajkowski R., Grabe G.J., van der Wolf J.M. Distribution of Dickeya spp. and Pectobacterium carotovorum subsp. carotovorum in naturally infected seed potatoes. Eur. J. Plant Pathol., 2009, 125(2): 263-275 CrossRef
  22. Slawiak M., Lojkowska E., van der Wolf J.M. First report of bacterial soft rot on potato caused by Dickeya sp. (syn. Erwinia chrysanthemi) in Poland. Plant Pathol., 2009, 58(4): 794 CrossRef
  23. Laurila J., Hannukkala A., Nykyri J., Pasanen M., Helias V., Garlant L., Pirhonen M. Symptoms and yield reduction caused by Dickeya spp. strains isolated from potato and river water in Finland. Eur. J. Plant Pathol., 2010, 126(2): 249-262 CrossRef
  24. Tsror L., Erlich O., Leblush S., Hazanovsky M., Zig U., Slawiak M, Grabe G., van der Wolf J.M., van de Haar J. J. Assessment of recent outbreaks of Dickeya sp. (syn. Erwinia chrysanthemi) slow wilt in potato crops in Israel. Eur. J. Plant Pathol., 2009, 123: 311-320 CrossRef
  25. Tsror L., Erlich O., Lebiush S., van der Wolf J., Czajkowski R., Mozes G., Sikharulidze Z., Ben Daniel B. First report of potato blackleg caused by a biovar 3 Dickeya sp. in Georgia. New Disease Reports, 2011, 23: 1 CrossRef
  26. Tsror L., Erlich O., Hazanovsky M., Ben Daniel B., Zig U., Lebiush S. Detection of Dickeya spp. latent infection in potato seed tubers using PCR or ELISA and correlation with disease incidence in commercial field crops under hot-climate conditions. Plant Pathol., 2012, 61(1): 161-168 CrossRef
  27. Ignatov A.N., Karlov A.N., Dzhalilov F.S., Karandashov V.E., Knyaz'kina M.S., Kornev K.P., Pekhtereva E.Sh. Zashchita i karantin rastenii, 2014, 11: 41-43 (in Russ.).
  28. Lyon G.D. The biochemical basis of resistance of potatoes to soft rot Erwinia spp. — a review. Plant Pathol., 1989, 38(3): 313-339 CrossRef
  29. Hijmans R.J., Spooner D.M. Geographic distribution of wild potato species. Am. J. Bot., 2001, 88(11): 2101-2112 CrossRef
  30. Czajkowski R., Pérombelon M.C.M., van Veen J.A., van der Wolf J.M. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathol., 2011, 60(6): 999-1013 CrossRef
  31. Hidalgo O.A., Echandi E. Evaluation of potato clones for resistance to tuber and stem rot induced by Erwinia chrysanthemi. Am. Potato J., 1982, 59(12): 585-592 CrossRef
  32. Pérombelon M.C.M., Salmond G.P.C. Bacterial soft rots. In: Pathogenesis and host specificity in plant diseases. Vol. 1. Prokaryotes. U.S. Singh, R.P. Singh, K. Kohmoto (eds.). Pergamon, Oxford, 1995.
  33. Bains P.S., Bisht V.S., Lynch D.R. Kawchuk L.M., Helgeson J.P. Identification of stem soft rot (Erwinia carotovora subspecies atroseptica) resistance in potato. Am. J. Potato Res., 1999, 76(3): 137-141 CrossRef
  34. Lees A.K., de Maine M.J., Nicolson M.J., Bradshaw J.E. Long-day-adapted Solanum phureja as a source of resistance to blackleg by Erwinia carotovora subsp. atroseptica. Potato Res., 2000, 43(3): 279-285 CrossRef
  35. Hudák I., Dobránszki J. In vitro methods for testing potato clones against soft rot Erwiniae. Acta Horticulturae, 2006, 725: 445-449 CrossRef
  36. Hudák I. Soft rot and fire blight susceptibility of in vitro potato and apple plantlets. PhD dissertation. Budapest, 2014.
  37. Sima A., Mozafari J., Nader H., Cobra M. In vitro evaluation of resistant of potato cultivars against black leg disease (Pectobacterium atrosepticum). Biological Forum — An International Journal, 2015, 7(2): 1087-1094.
  38. Arce P., Moreno M., Gutierrez M., Gebauer M., Dell’Orto P., Torres H., Acuña I., Oliger P., Venegas A., Jordana X., Kalazich J., Holuigue L. Enhanced resistance to bacterial infection by Erwinia carotovora subsp. atroseptica in transgenic potato plants expressing the attacin or the cecropin SB-37 genes. Am. J. Potato Res., 1999, 76(3): 169-177 CrossRef
  39. Bisht V.S., Bains P.S., Letal J.R. A simple and efficient method to assess the susceptibility of potato to stem rot by Erwinia carotovora subspecies. Am. Potato J., 1993, 70(8): 611-616 CrossRef
  40. Rivero M., Furman N., Mencacci N., Picca P., Toum L., Lentz E., Bravo-Almonacid F., Mentaberry A. Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens. J. Biotechnol., 2012, 157(2): 334-343 CrossRef
  41. McGuire R.G., Kelman A. Reduced severity of Erwinia soft rot in potato tubers with increased calcium content. Phytopathology, 1984, 74(10): 1250-1256 CrossRef
  42. Koppel M. Methods of assessing potato tubers for resistance to bacterial soft rot. Potato Res., 1993, 36(3): 183-188 CrossRef
  43. Bain R.A., Perombelon C.M. Methods of testing potato cultivars for resistance to soft rot of tubers caused by Erwinia carotovora subsp. atroseptica. Plant Pathol., 1988, 37(3): 431-437 CrossRef
  44. Lapwood D.H., Read P.J., Spokes J. Methods for assessing the susceptibility of potato tubers of different cultivars to rotting by Erwinia carotovora subspecies atroseptica and carotovora. Plant Pathol., 1984, 33(1): 13-20 CrossRef
  45. Tzeng K.S., McGuire R., Kelman A. Resistance of tubers from different potato cultivars to soft rot caused by Erwinia carotovora subsp. atroseptica. Am. Potato J., 1990, 67(5): 287-305 CrossRef
  46. Lojkowska E., Kelman A. Comparison of the effectiveness of different methods of screening for bacterial soft rot resistance of potato tubers. Am. Potato J., 1994, 71(2): 99-113 CrossRef
  47. Haynes K.G., Potts W.J.E., Goth R.W. Evaluation of the reliability of determining soft rot resistance in potatoes by the tuber slice method. Am. Potato J., 1997, 74(4): 265-275 CrossRef
  48. Hudák I., Hevesi M., Dobránszki J., Magyar-Tábori K. In vitro tests of resistance to soft rot Erwiniae on potato tubers. Acta Horticulturae, 2009, 812: 103-105 CrossRef
  49. Ngadze E., Icishahayo D., Coutinho T.A., van der Waals J.E. Role of polyphenol oxidase, peroxidase, phenylalanine ammonia lyase, chlorogenic acid, and total soluble phenols in resistance of potatoes to soft rot. Plant Dis., 2012, 96(2): 186-192 CrossRef
  50. Rousselle-Bourgeois F., Priou S. Screening tuber-bearing Solanum spp. for resistance to soft rot caused by Erwinia carotovora ssp. atroseptica (van Hall) Dye. Potato Res., 1995, 38(1): 111-118 CrossRef
  51. Marquez-Villavicencio M.D.P., Groves R.L., Charkowski A.O. Soft rot disease severity is affected by potato physiology and Pectobacterium taxa. Plant Dis., 2011, 95(3): 232-241 CrossRef
  52. Thangavel T., Tegg R.S., Wilson C.R. Resistance to multiple tuber diseases expressed in somaclonal variants of the potato cultivar Russet Burbank. The Scientific World Journal, 2014, 2014: Article ID 417697 CrossRef
  53. Pasco C., Bozec M., Ellissèche D., Andrivon D. Resistance behaviour of potato cultivars and advanced breeding clones to tuber soft rot caused by Pectobacterium atrosepticum. Potato Res., 2006, 49(2): 91-98 CrossRef
  54. Ciampi-Panno L., Andrade-Soto N. Preliminary evaluation of bacterial soft rot resistance in native Chilean potato clones. Am. Potato J., 1984, 61(2): 109-112 CrossRef
  55. Bartz J.A., Kelman A. Bacterial soft rot potential in washed potato tubers in relation to temperatures of tubers and water during simulated commercial handling practices. Am. Potato J., 1984, 61(8): 485-493 CrossRef

back