doi: 10.15389/agrobiology.2018.1.50eng

UDC 633.111.1:575.22:575.167:575.116

Acknowledgements:
Supported financially by Russian Science Foundation (project ¹ 16-16-10005)

 

QTL MAPPING IN HEXAPLOID SOFT WHEAT (Triticum aestivum L.)
IN WEST-SIBERIAN PLAIN

V.P. Shamanin1, S.S. Shepelev1, V.E. Pozherukova1, I.V. Pototskaya1, N.V. Kocherina2, U. Lohwasser3, A. Borner3, Yu.V. Chesnokov2

1StolypinOmsk State Agrarian University, 1, Institutskaya pl., Omsk, 644008 Russia, e-mail vp.shamanin@omgau.org;
2Agrophysical Research Institute, Federal Agency for Scientific Organizations, 14, Grazhdanskii prosp., St. Petersburg, 195220 Russia, e-mail yuv_chesnokov@agrophys.ru (✉ corresponding author);
3Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Stadt Seeland OT Gatersleben, D-06466 Germany, e-mail boerner@ipk-gatersleben.de

ORCID:
Shamanin V.P. orcid.org/ 0000-0003-4767-9957
Kocherina N.V. orcid.org/0000-0002-8791-1899
Shepelev S.S. orcid.org/0000-0002-4282-8725
Lohwasser U. orcid.org/0000-0002-3788-5258
Pozherukova V.E. orcid.org/0000-0001-8429-2167
Börner A. orcid.org/0000-0003-3301-9026
Pototskaya I.V. orcid.org/0000-0003-3574-2875
Chesnokov Yu.V. orcid.org/0000-0002-1134-0292

Received October 17, 2017

 

Mapping of quantitative traits loci (QTL) is a modern approach to studying their genetic variability. In this, mapping QTL which determine the economically valuable traits and their effective use in the marker assisted selection are of practical interest. Here, we report evaluation of a set of 114 recombinant inbred lines of spring wheat (Triticum aestivum L.) mapping population ITMI (International Triticeae Mapping Initiative) in the conditions of West-Siberian plain, Russia. The ITMI mapping population was obtained by crossing spring wheat Triticum aestivum L. cultivar Opata 85 with a synthetic hexaploid W7984, the amphidiploid which was produced by crossing Aegilops tauschii Coss. (DD) sample CIGM86.940 and tetraploid wheat T. turgidum var. durum cultivar Altar 84 (AABB). In total, 42 different economically valuable traits were evaluation during the vegetation period, and 55 quantitative trait loci were identified. The dependence fidelity between the identified loci and trait polymorphism was estimated based on the threshold of the likelihood ratio of LOD-score (logarithm of odds). For 35 identified QTL, LOD ≥ 3.0 was found. Identified QTL were dispersed on 19 linkage groups different chromosomes and expressed in environment conditions of southern forest-steppe zone of West-Siberian plain with varying certainty. It was shown that the manifestation of the identified QTL may be environmentally dependent or independent, and the investigated quantitative traits correlated and were interrelated. To determine the nature of the relationship between the evaluated traits, the correlation coefficients rxy were calculated. We revealed different correlations between expression of the evaluated economically valuable traits studied which stresses on the complex nature of their manifestation. It is established that the genetic variability of most of the traits evaluated is usually controlled by several QTL with broad effects which correlate with one another or by a large number of QTL with small effects. The detected QTL and linked molecular markers may be of interest for further study of the genetic control of economically valuable traits determined by identified QTL and for implementing marker-assisted selection in bread wheat.

Keywords: Triticum aestivum, quantitative economically valuable traits, ecology and genetic mapping, southern forest-steppe zone of West-Siberian plain of Russia.

 

Full article (Rus)

Supplementary (Rus)

Full article (Eng)

Supplementary (Eng)

 

REFERENCES

  1. Tanksley S.D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and environments. Genetics, 1991, 127: 181-187.
  2. Kearsey M.J., Farquhar A.G. QTL analysis in plants: where are we now? Heredity, 1998, 80: 137-142 CrossRef
  3. Morgante M., Salamini F. From plant genomics to breeding practice. Curr. Opin. Biotech., 2003, 14: 214-219 CrossRef
  4. Tanksley S.D. Mapping polygenes. Annu. Rev. Genet., 1993, 27: 205-233 CrossRef
  5. Liu B.H. Statistical genomics: linkage, mapping, and QTL analysis. London, NY, Washington, 1998.
  6. Collard B.C., Mackill D.J. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil. Trans. R. Soc. B, 2008, 363: 557-572 CrossRef
  7. Khavkin E.E. Molekulyarnye markery v rastenievodstve [Molecular markers in plant breeding]. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 1997, 5: 3-21 (in Russ.).
  8. Potokina E.K., Chesnokov Yu.V. Sovremennye metody genomnogo analiza v issledovaniyakh genetiki kolichestvennykh priznakov u rastenii [Modern methods of genome analysis in studies of quantitative traits in plants]. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2005, 3: 3-18 (in Russ.).
  9. Chesnokov Yu.V. Kartirovanie lokusov kolichestvennykh priznakov u rastenii [QTL mapping in plants]. St. Petersburg, 2009 (in Russ.).
  10. Chesnokov Yu.V. Molekulyarno-geneticheskie markery i ikh ispol'zovanie v predselektsionnykh issledovaniyakh [Molecular markers and their use in pre-breeding]. St. Petersburg, 2013 (in Russ.).
  11. Yakushev V.P. Na puti k tochnomu zemledeliyu [Towards precision agriculture]. St. Petersburg, 2002 (in Russ.).
  12. Paterson A.H., Damon S., Hewitt J.D., Zamir D., Rabinowitch H.D., Lincoln S.E., Lander E.S., Tanksley S.D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and environments. Genetics, 1991, 127(1): 181-187.
  13. Stuber C.W., Lincoln S.E., Wolf D.W., Helentjaris T., Lander E.S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823-839.
  14. Li Z.K., Yu S.B., Lafitte H.R., Huang N., Courtois B., Hittalmani S., Vijayakumar C.H.M., Liu G.F., Wang G.C., Shashidhar H.E., Zhuang J.Y., Zheng K.L., Singh V.P., Sidhu J.S., Srivantaneeyakul S., Khush G.S. QTL × environment interactions in rice. I. Heading date and plant height. Theor. Appl. Genet., 2003, 108: 141-153 CrossRef
  15. Blanco A., Pasqualone A., Troccoli A., Di Fonzo N., Simeone R. Detection of grain protein content QTLs across environment in tetraploid wheats. Plant Mol. Biol., 2002, 48: 615-623 CrossRef
  16. Pshenichnikova T.A., Ermakova M.F., Chistyakova A.K., Shchukina L.V., Berner A., Reder M. Molekulyarnoe kartirovanie lokusov, svyazannykh s pokazatelyami kachestva zerna myagkoi pshenitsy [Molecular mapping of loci associated with grain quality in soft wheat]. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2006, 5: 41-47 (in Russ.).
  17. Pshenichnikova T.A., Ermakova M.F., Chistyakova A.K., Shchukina L.V., Berezovskaya E.V., Lokhvasser U., Reder M., Berner A. Genetika, 2008, 44: 90-101 (in Russ.).
  18. Börner A., Schumann E., Fürste A., Cöster H., Leithold B., Röder M., Weber W. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet., 2002, CrossRef
  19. Batalova G.A., Rusakova I.I, Kocherina N.V., Lovasser U., Berner A., Chesnokov Yu.V. Otsenka linii ITMI i kartirovanie QTL u yarovoi myagkoi pshenitsy (Triticum aestivum L.) v usloviyakh Severo-Vostoka Rossiiskoi Federatsii [Evaluation of ITMI lines and QTL mapping in spring soft wheat (Triticum aestivum L.) in the North-East of the Russian Federation]. Kirov, 2016 (in Russ.).
  20. Chesnokov Yu.V., Sitnikov M.N., Schumlyanskaya N.V., Kocherina N.V., Goncharova E.A., Kozlenko L.V., Syukov V.V., Kochetkov D.V., Lohwasser U., Börner A. Catalogue of recombinant inbred lines of mapping population ITMI of soft spring wheat Triticum aestivum L. (ecological and geographical trials and QTL mapping). St. Petersburg—Gatersleben, 2014.
  21. Chesnokov Yu.V., Mirskaya G.V., Kanash E.V., Kocherina N.V., Lohwasser U., Börner A. QTL mapping in spring soft wheat (Triticum aestivum L.) in controlled conditions of agroecobiopolygon. Russian Journal of Plant Physiology, 2017, 64(1): 55-68 CrossRef
  22. Shamanin V., Salina E., Wanyera R., Zelenskiy Y., Olivera P., Morgounov A. Genetic diversity of spring wheat from Kazakhstan and Russia for resistance to stem rust Ug99. Euphytica, 2016, 212(2): 287-296 CrossRef
  23. Filatova A.A., Shitova I.P. Shirokii unifitsirovannyi klassifikator SEV roda Triticum L. [A broad unified Comecon classifier of genus Triticum L.]. Leningrad, 1989 (in Russ.).
  24. Lander E.S., Green P., Abrahamson J., Barlow A., Daly M.J., Lincoln S.E., Newburg L.MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174-181 CrossRef
  25. Haldane J.B.S.The recombination of linkage values and the calculation of distance between the loci of linkage factors. J. Genet., 1919, 8: 299-309.
  26. Ganal M.W., Röder M.S.Microsatellite and SNP markers in wheat breeding. In: Genomics-assisted crop improvement. R.K. Varshney, R. Tuberosa (eds.). Springer, Dordrecht, 2007: 1-24 CrossRef
  27. Nelson J.C. QGENE: software for mapping-based genomic analysis and breeding. Mol. Breeding, 1997, 3(3): 239-245 CrossRef
  28. Kosambi D.D. The estimation of map distances from recombination values. Annals of Hunan Genetics, 1944, 12(1): 172-175 CrossRef
  29. Morton N.E.Sequential test for the detection of linkage. Am. J. Hum. Genet., 1955, 7: 277-318.
  30. Kocherina N.V., Artemyeva A.M., Chesnokov Yu.V. Use of LOD-score technology in mapping quantitative trait loci in plants. Russian Agricultural Sciences, 2011, 37: 201-204 CrossRef
  31. Kendall M., St'yuart A. Statisticheskie vyvody i svyazi [Statistical inferences and correlations]. Moscow, 1973 (in Russ.).
  32. Fisher R.E. Statisticheskie metody dlya issledovatelei [Statistical methods for researchers]. Moscow, 1958 (in Russ.).
  33. Zhuchenko A.A., Korol' A.B. Rekombinatsiya v evolyutsii i selektsii [Recombination in evolution and breeding]. Moscow, 1985 (in Russ.).
  34. Zhuchenko A.A. Adaptivnoe rastenievodstvo (ekologo-geneticheskie osnovy). Teoriya i praktika Adaptive plant growing (ecological and genetic basis) — theory and practice]. Moscow, 2008 (in Russ.).
  35. Worland A.J. The influence of flowering time genes on environmental adaptability in European wheats. Euphytica, 1996, 89: 49-57 CrossRef
  36. Worland A.J., Börner A., Korzun V., Li W.M., Petrovic S., Sayers E.J.The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica, 1998, 100: 385-394 CrossRef
  37. Iwaki K., Haruna S., Niwa T., Kato K. Adaptation and ecological differentiation in wheat with special reference to geographical variation of growth habit and Vrn genotype. Plant Breeding, 2001, 120: 107-114 CrossRef
  38. Zhuchenko A.A. Adaptivnyi potentsial kul'turnykh rastenii: ekologo-geneticheskie osnovy [Adaptive potential of cultivated plants: ecological and genetic basis]. Kishinev, 1988 (in Russ.).
  39. Zhuchenko A.A. Ekologicheskaya genetika kul'turnykh rastenii (adaptatsiya, rekombinogenez, agrobiotsenoz) [Ecological genetics of cultivated plants (adaptation, recombinogenesis, agrobiocenosis)]. Kishinev, 1980 (in Russ.).
  40. Zhuchenko A.A. Adaptivnoe rastenievodstvo (ekologo-geneticheskie osnovy) [Adaptive plant growing (ecological and genetic basis)]. Kishinev, 1990 (in Russ.).
  41. Otto S.P., Jones C.D. Detecting the undetected: estimating the total number of loci underlying a quantitative trait. Genetics, 2000, 156(4): 2093-2107.

back