doi: 10.15389/agrobiology.2018.1.209eng

UDC 628.355:628.385:573.6.086.835:582.663.2

Acknowledgements:
Supported financially by the RAS Presidium Program ¹ 3 and Russian Foundation for Basic Research (grant ¹ 14-08-31768)

 

MATERIALS DERIVED FROM Amaranthus cruentus L. USED AS
CO-SUBSTRATES CAN INTENSIFY METHANOGENESIS DURING
BIOCONVERSION OF ORGANIC WASTE

S.T. Minzanova1, V.F. Mironov1, D.E. Belostotskii1, A.Z. Mindubaev1, L.G. Mironova1, M.S. Gins2, V.K. Gins2, P.F. Kononkov2, V.A. Milyukov1

1Arbuzov Institute of Organic and Physical Chemistry, Subdivision of Federal Kazan Scientific Center RAS,Federal Agency for Scientific Organizations, 8, ul. Arbuzova, Kazan, 420088 Russia, e-mail minzanova@iopc.ru (✉ corresponding author), mironov@iopc.ru, DimBoss@yandex.ru, mindubaev-az@yandex.ru, mironoval1963@gmail.com, miluykov@iopc.ru;
2Federal Research Center for Vegetable Growing, Federal Agency for Scientific Organizations, 14, ul. Selektsionnaya, pos. VNIISSOK, Odintsovskii Region, Moscow Province, 143080 Russia, e-mail anirr@bk.ru, anirr67@yandex.ru

ORCID:
Minzanova S.T. orcid.org/0000-0001-9678-8821
Gins M.S. orcid.org/0000-0001-5995-2696
Mironov V.F. orcid.org/0000-0002-4198-3774
Gins V.K. orcid.org/0000-0002-7053-4345
Belostotskii D.E. orcid.org/0000-0002-2824-1223
Kononkov P.F. orcid.org/0000-0001-7101-3528
Mindubaev A.Z. orcid.org/0000-0002-8596-7805
Milyukov V.A. orcid.org/ 0000-0002-8069-457X
Mironova L.G. orcid.org 0000-0003-1919-571X

Received January 6, 2017

 

Methane fermentation (biomethanogenesis) performed by a multicomponent microbial consortium under anaerobic conditions results in a mixture of approximately 65 % ÑH4, 30 % CO2, 1 % Í2S and minor amounts of N2, O2, Í2 and CO. The peculiarity of biomethanogenesis lies in the ability to convert almost all classes of organic compounds, household, agricultural and some industrial waste into biogas. We were the first to assess the efficiency of the biogas production from organic waste as influenced by various materials derived from amaranth (Amaranthus cruentus L.) which were used as co-substrates. Our findings indicate that optimization of the substrate organic matter composition by using dry phytomass of amaranth plants or amaranth pulp which remains after removing all practically valuable substances makes it possible to produce biogas from sewage sludge. This facilitates solving ecological problems of waste disinfection and utilization, and gives us an alternative, cheap and renewable source for fuel. Cultivated A. cruentus is a high-yielding protein-rich crop. Its biomass serves as a reproducible raw material. In our previous works, we reported the technology for rutin, vegetable protein and pectin production from A. cruentus plants, and suggested a scheme for complex processing which includes extraction of these substances from amaranth dry phytomass in a single technological cycle. The pulp obtained after extraction of all valuable compounds was proposed as a co-substrate for organic waste anaerobic fermentation. We modeled the effect of amaranth-derived substances on biogas production in the laboratory bioreactor using large-tonnage urban sewage sludge as a substrate. It was shown that the doses of the additives affected the process, i.e. the excess of amaranth plant mass (74 % and 87 %) suppressed methanogenesis. The thermophilic (50 °C) fermentation was found to be superior to the mesophilic one (37 °Ñ), with the biogas production of 354 ml per gram of dry matter, when large-tonnage sewage sludge after filter press (45 % humidity) was fermented using amaranth pulp as the co-substrate. Moreover, in the presence of amaranth pulp, the biomethanogenesis under the mesophilic conditions also increased, the lag phase was almost absent, and the ÑH4 level throughout the experiment was about 60 %. As a result, the specific biogas yield reached 251.9 ml per gram of dry matter that is equivalent to ∼ 0.25 m3 of the resultant biogas from 1 kg of organic raw material dry matter. In order to search for the active fraction of amaranth phytomass, we used solvents of different polarity, i.e. dichloromethane, 70 % aqueous ethanol and distilled water. It was found that the lag phase reduced to 10 days with the CÍ2Cl2 and EtOH extracts, which was comparable to that in the presence of dry amaranth phytomass. Obviously, these extracts contain components which either undergo rapid destruction by microorganisms able to turn them into biogas, or contribute to bacterial growth. The dichloromethane extract added to the substrate led to the most efficient biogas production, which is consistent with the literature data. Our findings indicate the ecological and economic feasibility of using amaranth pulp for organic waste bioconversion.

Keywords: Amaranthus cruentus L., amaranth, methanogenesis, co-substrate, amaranth phytomass extracts, biogas, sewage sludge, amaranth pulp.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Varfolomeev S.D., Efremenko E.N., Krylova L.P. Uspekhi khimii, 2010, 79(6): 544-564 (in Russ.).
  2. Varfolomeev S.D., Moiseev I.I., Myasoedov B.F. Vestnik Rossiiskoi akademii nauk, 2009, 79(7): 595-604 (in Russ.).
  3. Gerardi M.H. The microbiology of anaerobic digesters. John Wiley & Sons, Inc., Hoboken, New Jersey, 2003.
  4. Schiraldi C., Giuliano M., de Rosa M. Perspectives on biotechnological applications of archaea. Archaea, 2002, 1(2): 75-86 CrossRef
  5. Vogt C., Kleinsteuber S. Richnow H.-H. Anaerobic benzene degradation by bacteria. Microbial Biotechnol., 2011, 4(6): 710-724 CrossRef
  6. Fowler S.J., Dong X., Sensen C.W., Suflita J.M., Gieg L.M. Methanogenic toluene metabolism: community structure and intermediates. Environ. Microbiol., 2012, 14(3): 754-764 CrossRef
  7. Ahring B.K., Ellegaard L., Angelidaki I., Schmidt J.E., Gavala H.N., Skiadas I.V., Ahring B.K., Haagensen F., Dolfing J., Mogensen A.S., Lyberatos G., Stamatelatou K., Pind P.F. Biomethanation II. B.K. Ahring (ed.). Springer, Berlin, 2003 CrossRef
  8. Deublein D., Steinhauser A. Biogas from waste and renewable resources. Wiley-VCH Verlag GmbH & Co. KGaAiley, Weinheim, Germany, 2008 CrossRef
  9. Samer M. Biogas plant constructions. In: Biogas. S. Kumar (ed.). InTech, Rijeka, Croatia, 2012: 343-368.
  10. Pisarikova B., Peterka J., Trackova M., Moudry J., Zraly Z., Herzig I. Chemical composition of the above-ground biomass of Amaranthus cruentus and A. hypochondriacus. Acta Vet. BRNO, 2006, 75(1): 133-138.
  11. Broudiscou L.P. Papon G., Broudiscou A.F. Effects of dry plant extracts on fermentation and methanogenesis in continuous culture of rumen microbes. Anim. Feed Sci. Technol., 2000, 87(3-4): 263-277 CrossRef
  12. Sirohi S.K., Pandey N., Goel N., Singh B., Mohini M., Pandey P., Chaudhry P.P. Microbial activity and ruminal methanogenesis as affected by plant secondary metabolites in different plant extracts.International Journal of Environmental Science and Engineering, 2009, 1(1): 52-58.
  13. Goel G., Makkar H.P.S., Becker K. Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin-rich fractions from different plant materials. J. Appl. Microbiol., 2008, 105(3): 770-777 CrossRef
  14. Mursec B., Vindis P., Janzekovic M., Brus M., Cus F. Analysis of different substrates for processing into biogas.Journal of Achievements in Materials and Manufacturing Engineering, 2009, 37(2): 652-659.
  15. Karpenstein-Machan M. Energiepflanzenbau für Biogasanlagenbetreiber. DLG-Verlag, Frankfurt am Main, 2005.
  16. Ferry J.G., Kastead K.A. Methanogenesis. In: Archaea: molecular and cellular biology. R. Cavicchioli (ed.). ASM Press, Washington, 2007, Ch. 13: 288-314.
  17. Guben-Veil' N.N. Metody organicheskoi khimii [Methods of organic chemistry]. Moscow, 1963 (in Russ.).
  18. Netrusov A.I., Kotova I.B. Mikrobiologiya [Microbiology]. Moscow, 2006 (in Russ.).
  19. Minzanova S.T., Mironov V.F., Konovalov A.I., Vyshtakalyuk A.B., Tsepaeva O.V., Mindubaev A.Z., Mironova L.G., Zobov V.V. Pektinyiznetraditsionnykhistochnikov: tekhnologiya, struktura, svoistvaibiologicheskayaaktivnost' [Pectins from non-traditional sources: technology, structure, properties and biological activity]. Kazan', 2011 (in Russ.).
  20. Gins V.K., Kononkov P.F., Pivovarov V.F., Gins M.S. [Creation of varieties and hybrids of vegetable crops with increased content of biologically active substances and antioxidants]. Agricultural Biology, 2003, 1: 108-113 (in Russ.).
  21. Vysochina G.I. Khimiya rastitel'nogo syr'ya, 2013, 2: 5-14 (in Russ.).
  22. Minzanova S.T., Mironov V.F., Vyshtakalyuk A.B., Tsepaeva O.V., Mironova L.G., Konovalov A.I. Izvestiya AN. Ser. khim., 2014, 9: 2142-2155 (in Russ.).
  23. Mindubaev A.Z., Minzanova S.T., Skvortsov E.V., Mironov V.F., Zobov V.V., Akhmadullina F.Yu., Mironova L.G., Belostotskii D.E., Konovalov A.I. Vestnik Kazanskogo tekhnologicheskogo universiteta,  2009, 4: 220-226 (in Russ.).
  24. Oh S., Shintani R., Koike S., Kobayashi Y. Ginkgo fruit extract as an additive to modify rumen microbiota and fermentation and to mitigate methane production. J. Dairy Sci., 2017, 100(3): 1923-1934 CrossRef
  25. Perna F.F. Jr., Cassiano E.C.O.,Martins M.F.,Romero L.A.,Zapata D.C.V., Pinedo L.A.,  Marino C.T., Rodrigues P.H.M. Effect of tannins-rich extract from Acacia mearnsii or monensin as feed additives on ruminal fermentation efficiency in cattle. Livest. Sci., 2017, 203: 21-29 CrossRef
  26. Medjekal S., Bodas R., Bousseboua H., López S. Evaluation of three medicinal plants for methane production potential, fiber digestion and rumen fermentation in vitro. Energy Procedia, 2017, 119: 632-641 CrossRef
  27. Bodas R., Prieto N., García-González R., Andrés S., López S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim. Feed Sci. Tech., 2012, 176(1-4): 78-93 CrossRef

back