doi: 10.15389/agrobiology.2018.1.189eng

UDC 573.6.086.83:577.21:57.052

Acknowledgements:
Experiments were carried out using equipment of Analytic Center for Nano and Biotechnology of Peter the Great St. Petersburg Polytechnic University
Supported financially by Russian Science Foundation (grant ¹ 16-16-10043), the methods of deacetylated chitooligosaccharides purification were developed using financial support from Russian Foundation for Basic Research (grant ¹ 15-29-05858-ofi-m)

 

PRODUCTION OF TERMINALLY N-DEACETYLATED OLIGOMERS
OF CHITOSANE USING RECOMBINANT CHITOOLIGOSACHARIDE
DEACETYLASE NodB OF BACTERIA Mesorhizobium loti EXPRESSED
IN Escherichia coli

I.V. Leppyanen1, V.V. Dolgikh2, T.O. Artamonova3, S.A. Lopatin4,
M.A. Khodorkovskii3, I.A. Tikhonovich1, E.A. Dolgikh1

1All-Russian Research Institute for Agricultural Microbiology, Federal Agency for Scientific Organizations, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia,
e-mail dol2helen@yahoo.com (✉ corresponding author), leppyanen_irina@rambler.ru, arriam2008@yandex.ru;
2All-Russian Research Institute of Plant Protection, Federal Agency for Scientific Organizations,3, sh. Podbel’skogo, St. Petersburg, 196608 Russia,
e-mail dol1slav@yahoo.com;
3Peter the Great St. Petersburg Polytechnic University, 29, ul. Politechnicheskaya,
St. Petersburg, 195251 Russia, e-mail artamonova@nanobio.spbstu.ru, khodorkovskii@mail.ru;
4Research Center of Biotechnology RAS, Federal Agency for Scientific Organizations, 33, str. 2, Leninskii prosp., Moscow, 119071 Russia, e-mail lopatin@biengi.ac.ru

ORCID:
Leppyanen I.V. orcid.org/0000-0002-2158-0855
Khodorkovskii M.A. orcid.org/0000-0001-7909-0683
Dolgikh V.V. orcid.org/0000-0002-2362-2633
Tikhonovich I.A. orcid.org/0000-0001-8968-854x
Artamonova T.O. orcid.org/0000-0002-0069-0561
Dolgikh E.A. orcid.org/0000-0002-5375-0943
Lopatin S.A. orcid.org/0000-0002-2018-7859

Received December 7, 2016

 

Chitin and chitosan oligomers affect the growth and development of plants and are able to induce plant resistance to infection with phytopathogens, which determines the interest in the preparation and use of these compounds. The influence of chitosan oligomers on the plant directly depends on the degree of deacetylation, but it is difficultly to obtain compounds with necessary structure using hydrolysis of the polymer or chemical synthesis. Such problems can be solved in the process of biosynthesis of chitooligosaccharides, when enzymes with specific activity are used. The selectivity of the chitooligosaccharide deacetylase (EC 3.5.1.-) of rhizobia to carry out the mono-deacetylation of the chitooligosaccharides at the terminal position of the molecule causes interest in studying the possibility to use this enzyme for the synthesis of such compounds. In current work we have developed approaches for the synthesis of mono-deacetylated chitopentaose (tetra-N-acetylchitopentaose) using Mesorhizobium loti CIAM1026 enzyme chitooligosaccharide deacetylase. Heterologous expression of the nodB gene encoding the M. loti chitooligosaccharide deacetylase in Escherichia coli XL1-Blue MRF' and SHuffle express strains using the modified pOPE101mod-nodB vector with deleted pelB sequence resulted in soluble enzyme preparation. The amount of soluble enzyme was higher in SHuffle express strain, which was specially developed for correct formation of disulfide bonds in synthesized proteins. Studying the properties of the enzyme purified on Ni-NTA agarose showed its ability to deacetylate penta-N-acetylchitopentaose at the terminal position. Mass spectrometric analysis confirmed the use of practically the entire substrate for the preparation of deacetylated tetra-N-acetylchitopentaose. Methods for the separation and purification of deacetylated chitooligosaccharides by ion exchange chromatography followed by desalination have been developed. Synthesis of terminally N-deacetylated chitosan oligomers may be a necessary step in the preparation of their conjugates with biologically active compounds.

Keywords: chitin and chitosan oligomers, Mesorhizobium loti chitooligosaccharide deacetylase, pOPE101-215(Yol) and pRSETb vectors, biosynthesis, Escherichia coli SHuffle express and XL1-Blue MRF’.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Abu-Muriefah S.S. Effect of chitosan on common bean (Phaseolus vulgaris L.) plants grown under water stress conditions. Int. Res. J. Agric. Sci. Soil Sci., 2013, 3: 192-199.
  2. Chatelain P.G., Pintado M.E., Vasconcelos M.W. Evaluation of chitooligosaccharide application on mineral accumulation and plant growth in Phaseolus vulgaris. Plant Sci., 2014, 215-216: 134-140 CrossRef
  3. Khan W., Prithiviraj B., Smith D.L. Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves. J. Plant Physiol., 2003, 160: 859-863 CrossRef
  4. Aziz A., Trotel-Aziz P., Dhuicq L., Jeandet P., Couderchet M., Vernet G. Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Disease Control and Pest Management, 2006, 96(11): 1188-1194 CrossRef
  5. Gayoso G., Pomar F., Novo-Uzal E., Merino M., de Ilarduya O.M. The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. Plant Biology, 2010, 10(232): 1471-2229 CrossRef
  6. Kaku H., Nishizawa Y., Ishii-Minami N., Akimoto-Tomiyama C., Dohmae N., Takio K., Minami E., Shibuya N. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. PNAS USA, 2006, 103: 11086-11091 CrossRef
  7. Cabrera J.C., Messiaen J., Cambier P., Van Cutsem P. Size, acetylation and concentration of chitooligosaccharide elicitors determine the switch from defense involving PAL activation to cell death and water peroxide production in Arabidopsis cell suspensions. Physiologia Plantarum, 2006, 127: 44-56 CrossRef
  8. Conrath U., Domard A., Kauss H. Chitosan-elicited synthesis of callose and of coumarin derivatives in parsley cell suspension cultures. Plant Cell Rep., 1989, 8(3): 152-155 CrossRef
  9. Dzung N.A., Khanh V.T.P., Dzung T.T. Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohyd. Polym., 2011, 84: 751-755 CrossRef
  10. Spaink H., Sheeley D. M., van Brussel A.A.N., Glushka J., York W.S., Tak T., Geiger O., Kennedy E., Reinhold N., Lugtenberg B.J.J. A novel highly unsaturated fatty acid moiety of lipooligosaccharide signals determines host specificity of Rhizobium. Nature, 1991, 354: 125-130 CrossRef
  11. Mergaert P., D’Haeze W., Geelen D., Promé D., Van Montagu M., Geremia R., Promé J.C., Holsters M. Biosynthesis of Azorhizobium caulinodans nod factors. J. Biol. Chem., 1995, 270(49): 29217-29223 CrossRef
  12. Roche P., Maillet F., Plazanet C., Debelle F., Ferro M., Truchet G., Prome J.-C., Denarie J. The common nodABC genes of Rhizobium meliloti are host-range determinants. PNAS USA, 1996, 93: 15305-15310 CrossRef
  13. Southwick A.M., Wang L.X., Long S.R., Lee Y.C. Activity of Sinorhizobium meliloti NodAB and NodH enzymes on thiochitooligosaccharides. J. Bacteriol., 2002, 184(14): 4039-4043 CrossRef
  14. John M., Rohrig H., Schmidt J., Wieneke U., Schell J. Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. PNAS USA, 1993, 90: 625-629 CrossRef
  15. Leppyanen I.V., Artamonova T.O., Lopatin S.A., Varlamov V.P., Tikhonovich I.A., Dolgikh E.A. Biosynthesis of hexa and pentameric chitooligosaccharides using N-acetyl-glucoseaminyl transferase from rhizobial bacteria. Russian Journal of Genetics: Applied Research, 2014, 4(5): 368-381 CrossRef
  16. Schmiedl A., Breitling F., Winter C., Queitsch I. Dübel S. Effect of unpaired cysteines on yield, solubility and activity in various recombinant antibody formats expressed in E. coli. J. Immunol. Methods, 2000, 242(1-2): 101-114 CrossRef
  17. Hamer S.N., Cord-Landwehr S., Biarnes X., Planas A., Waegeman H., Moerschbacher B.M., Kolkenbrock S. Enzymatic production of defined chitosan oligomers with a specific pattern of acetylation using a combination of chitin oligosaccharide deacetylases. Sci. Rep., 2015, 5: 8716 CrossRef
  18. Miroux B., Walker J.E. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol., 1996, 260: 289-298 CrossRef
  19. Bertani G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol., 1951, 62: 293-300.
  20. Inoue H., Nojima H., Okayama H. High efficiency transformation of Escherichia coli with plasmids. Gene, 1990, 96: 23-28 CrossRef
  21. Dower W.J., Miller J.F., Ragsdale C.W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res., 1988, 16: 6127-6145.
  22. Birnboim H.C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res., 1979, 7: 1513-1523. 
  23. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227: 680-685.
  24. Lobstein J., Emrich C.A., Jeans C., Faulkner M., Riggs P., Berkmen M. Shuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb. Cell Fact., 2012, 11: 753 CrossRef
  25. Caspeta L., Flores N., Pérez N.O., Bolívar F., Ramírez O.T. The effect of heating rate on Escherichia coli metabolism, physiological stress, transcriptional response, and production of temperature induced recombinant protein: a scale-down study. Biotechnol. Bioeng., 2009, 102(2): 468-482 CrossRef
  26. Lopatin S.A., Ilyin M.M., Pustobaev V.N., Bezchetnikova Zh.A., Varlamov V.P., Davankov V.A. Mass-spectrometric analysis of N-acetylchitooligosaccharides prepared through enzymatic hydrolysis of chitosan. Anal. Biochem., 1995, 227, 285-288 CrossRef
  27. Schmidt J., Wingender R., John M., Wieneke U., Schell J. Rhizobium meliloti nodA and nodB genes are involved in generating compounds that stimulate mitosis of plant cells. PNAS USA, 1988, 85(22): 8578-8582.

back