doi: 10.15389/agrobiology.2018.1.157eng

UDC 635.33:575.116:631.523.4:631.524.86:579.841.112

Acknowledgements:
Supported financially in part by Russian Foundation for Basic Research (grant ¹ 10-04-00446)

 

PHYSIOLOGICAL AND GENETIC COMPONENTS OF BLACK ROT
RESISTANCE IN DOUBLE HAPLOID LINES OF Brassica rapa L

A.M. Artemyeva1, A.N. Ignatov2, 3, A.I. Volkova1, N.V. Kocherina1, M.N. Konopleva4, Yu.V. Chesnokov5

1Federal Research Center the Vavilov All-Russian Institute of Plant Genetic Resources, Federal Agency for Scientific Organizations, 42-44, ul. Bol’shaya Morskaya, St. Petersburg, 190000 Russia, e-mail akme11@yandex.ru;
2ÎÎÎ Research Center PhytoEngineering, 58, ul. Moskovskaya, s. Rogachevo, Dmitrov Region, Moscow Province, 141880 Russia, e-mail a.ignatov@phytoengineering.ru;
3Peoples’ Friendship University of Russia, 6, ul. Miklukho-Maklaya, Moscow, 117198 Russia;
4Moscow Institute of Physics and Technology (State University), 9, Institutskii per., Dolgoprudnyi, Moscow Province, 141701 Russia, e-mail konopleva2007@rambler.ru;
5Agrophysical Research Institute, Federal Agency for Scientific Organizations, 14, Grazhdanskii prosp., St. Petersburg, 195220 Russia, e-mail yuv_chesnokov@agrophys.ru (✉ corresponding author);

ORCID:
Artemyeva A.M. orcid.org/0000-0002-6551-5203
Kocherina N.V. orcid.org/0000-0002-8791-1899
Ignatov A.N. orcid.org/ 0000-0003-2948-753X
Konopleva M.N. orcid.org/0000-0003-2150-9730
Volkova A.I. orcid.org/0000-0002-7174-0204
Chesnokov Yu.V. orcid.org/0000-0002-1134-0292

Received May 17, 2017

 

In some vegetation seasons black rot may damage up to 80 % of cabbage, turnip, rapeseed, mustard crop all over the world including Russia. To prevent the spread of black rot is difficult, and it is almost impossible to fight a pathogen penetrating into a susceptible plant. Among Brassica rapa L., the disease is most dangerous for root crops and leaf crops. Data on loci which determine the plant-specific resistance of B. rapa plants to black rot is still extremely limited. This study is the first to estimate resistance to four races of Xanthomonas campestris pv. campestris (Pam.) Dow., the causative agent of black rot in Brassicaceae, in the lines of doubled haploids of two B. rapa mapping populations, DH38 (+ Ð175 × > P143) and (DH30 + P115 × > Ð143). Here, we report data on identification and mapping the linkage groups and QTLs associated with physiological resistance to strains PHW231 (race 1), HRI5212 (race 3), HRI1279à (race 4), and Â-32 (race 6). For three of these races, OTLs have not been mapped so far. The study revealed lines which were resistant or hypersensitive to the four races of black rot agent. Monogenic non-linked inheritance of resistance to these races prevailed. Significant correlation was found between response to an individual strain and general infection in plants. A total of 13 QTLs which control resistance to four races of the black rot pathogen were identified for DH30 population and 19 QTLs were found for DH38 population. All detected loci did not change their localization during two years of investigation. The most important loci responsible for manifestation of physiology resistance to different races of black rot pathogen in DH30 were mapped in the linage groups A01, A03 and A07, whereas in DH38 these were in A03, A06 and A08. SSR analysis of the lines contrast in resistance to individual races of the pathogen revealed the microsatellite markers linked to the loci which control resistance to several races of black rot agent. So we have found effective molecular descriptors of B. rapa black rot resistance to each race separately and to the pathogen as such. The obtained data are of interest in elucidation of basic physiological and genetic mechanisms of gene-to-gene interaction and B. rapa resistance to different races of X. campestris pv. campestris.

Keywords: Brassica rapa L., Xanthomonas campestris pv. campestris (Pam.) Dow., black rot resistance, QTL mapping, SSR markers, molecular screening.

 

Full article (Rus)

Supplementary (Rus)

 

Full article (Eng)

Supplementary (Eng)

 

REFERENCES

  1. Williams P.H. Black rot: a continuing threat to world crucifers. Plant Dis., 1980, 64: 736-742 CrossRef
  2. Vicente J.G., Holub E.B. Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol. Plant Pathol., 2013, 14: 2-18 CrossRef
  3. Taylor J.D., Conway J., Roberts S.J., Astley D., Vicente J.G. Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology, 2002, 92: 105-111 CrossRef
  4. Singh D., Dhar S., Yadava D.K. Genetic and pathogenic variability of Indian strains of Xanthomonas campestris pv. campestris causing black rot disease in crucifers. Curr. Microbiol., 2011, 63(6): 551-60 CrossRef
  5. Vicente J.G. A podridao negra das cruciferas. G. Lopes (ed.): COTHN Centro Operativo e Tecnologico Hortofruticola, Alcobaca, 2004.
  6. Ignatov A., Kuginuki Y., Hida K. Distribution and inheritance of race-specific resistance to Xanthomonas campestris pv. campestris in Brassica rapa and B. napus. Journal of Russian Phytopathological Society, 2000, 1: 83-87.
  7. Ignatov A.N., Artemyeva A.M., Chesnokov Yu.V., Polityko V.A., Matveeva E.V., Oraevskiy A.A., Schaad N.W. Resistance of Brassica rapa L. and B. napus L. to black rot and leaf spot pathogens. Agricultural Biology, 2011, 1: 85-91 (in Russ.).
  8. Camargo L.E.A., Williams P.H., Osborn T.C. Mapping of quantitative trait loci controlling resistance of Brassica oleracea to Xanthomonas campestris pv. campestris in the field and greenhouse. Phytopathology, 1995, 85(10): 1296-1300 CrossRef
  9. Ignatov A.N., Kuginuki Y., Suprunova T.P., Pozmogova G.E., Seitova A.M., Dorokhov D.B., Hirai M. RAPD markers linked to locus controlling resistance for race 4 of the black rot causative agent, Xanthmonas campestris pv. campestris (Pamm.) Dow. in Brassica rapa L. Russian Journal of Genetics, 2000, 36: 281-283.
  10. Vicente J.G., Taylor J.D., Sharpe A.G., Parkin I.A.P., Lydiate D.J., King G.J. Inheritance of race-specific resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology, 2002, 92(10): 1134-1141 CrossRef
  11. Soengas P., Hand P., Vicente J.G.,·Pole J.M., Pink D.A.C. Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa. Theor. Appl. Genet., 2007, 114(4): 637-645 CrossRef
  12. Tanksley S.D. Mapping polygenes. Annu. Rev. Genet., 1993, 27: 205-233 CrossRef
  13. Artem’eva A.M., Rudneva E.N., Zhao J., Bonnema G., Budahn H., Chesnokov Yu.V. Accosiations search of molecular markers with determinant of blossom-time in natural and artificial population of Brassica rapa L. Agricultural Biology, 2012, 1: 21-32 CrossRef
  14. Artemyeva A.M., Rudneva E.N., Volkova A.I., Kocherina N.V., Chesnokov Y.V. Detection of chromosome loci determined morphological and black rot resistance traits in Brassica rapa L. Acta Horticulturae, 2013, 1005: 105-109 CrossRef
  15. Artemyeva A.M., Solovjova A.E., Kocherina N.V., Berensen F.A., Rudneva E.N., Chesnokov Yu.V. Mapping of chromosome loci determined manifestation of morphological and biochemical traits of quality in Brassica rapa L. crops. Russian Journal of Plant Physiology, 2016, 63: 259-272 CrossRef
  16. Ignatov A., Kuginuki Y., Hida K. Pathotypes of Xanthomonas campestris pv. campestris in Japan. Acta Phytopathologica et Entomologica Hungarica, 1999, 34: 177-181 CrossRef
  17. Anscombe F.J. The validity of comparative experiments. J. R. Stat. Soc. Ser. A-G, 1948, 111: 181-211 CrossRef
  18. Yule G.U. Notes of Karl Pearson's lectures on the theory of statistics, 1884-96. Biometrika, 1938, 30(1-2): 198-203 CrossRef
  19. Van Ooijen J.W. MapQTL®6.0, software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma B.V., Wageningen, Netherlands, 2009.
  20. Kosambi D.D. The estimation of map distance from recombination values. Annals of Eugenics, 1944, 12: 172-175 CrossRef
  21. Dorokhov D.B., Kloke E. Genetika, 1997, 33: 358-365 (in Russ.).
  22. Rubel M.H., Robin A.H.K., Natarajan S., Vicente J.G., Kim H.T., Park J.I., Nou I.S. Whole-genome re-alignment facilitates development of specific molecular markers for races 1 and 4 of Xanthomonas campestris pv. campestris, the cause of black rot disease in Brassica oleracea. Int. J. Mol. Sci., 2017, 18(12): 2523 CrossRef
  23. Ignatov A., Kuginuki Y., Hida K. Race-specific reaction of resistance to black rot in Brassica oleracea. Eur. J. Plant Pathol., 1998, 104(8): 821-827 CrossRef
  24. Guo H., Dickson M.H., Hunter J.E. Brassica napus sources of resistance to black rot in crucifers and inheritance of resistance. Hortscience, 1991, 26(12): 1545-1547.
  25. Westman A.L., Kresovich S., Dickson M.H. Regional variation in Brassica nigra and other weedy crucifers for disease reaction to Alternaria brassicicola and Xanthomonas campestris pv. campestris. Euphytica, 1999, 106(3): 253-259 CrossRef
  26. Singh D., Rathaur P.S., Vicente J.G. Characterization, genetic diversity and distribution of Xanthomonas campestris pv. campestris races causing black rot disease in cruciferous crops of India. Plant Pathol., 2016, 65(9): 1411-1418 CrossRef
  27. Visente J.G., Conway J., Roberts S.J., Taylor J.D. Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars. Phytopathology, 2001, 91(5): 492-499 https://doi.org/10.1094/PHYTO.2001.91.5.492).
  28. Lee J., Izzah N.K., Jayakodi M., Perumal S., Joh H.J., Lee H.J., Lee S.-C., Park J.Y., Yang K.-W., Nou I.-S., Seo J., Yoo J., Suh Y., Ahn K., Lee J.H., Choi G.J., Yu Y., Kim H., Yang T.-J. Genome-wide SNP identification and QTL mapping for black rot resistance in cabbage. BMC Plant Biology, 2015, 15: 32 CrossRef

back