doi: 10.15389/agrobiology.2017.1.3eng

UDC 632.938.2:57.023:57.21:57.087.1

Supported by Russian Foundation for Basic Research (grant № 16-34-60132 for O.A. Kulaeva), by grant of the President of the Russian Federation, project НШ-6759.2016.4, for M.S. Kliukova, by Russian Science Foundation (grant № 14-24-00135 for I.A. Tikhonovich and grant № 16-16-00118 for V.A. Zhukov).



O.A. Kulaeva1, M.S. Kliukova1, M.N. Povydysh2, I.A. Tikhonovich1, 3, V.A. Zhukov1

1All-Russian Research Institute for Agricultural Microbiology, Federal Agency of Scientific Organizations, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia,
2Saint-Petersburg State Chemical-Pharmaceutical Academy, Ministryof Healthcare of the Russian Federation, 14, ul. Prof. Popova, St. Petersburg, 197376 Russia;
3Saint Petersburg State University, 7/9, Universitetskaya nab., St. Petersburg, 199034 Russia

Povydysh M.N.
Tikhonovich I.A.
Zhukov V.A.

Received December 7, 2016


One of the actual problems of modern agriculture is crop loss due to various biotic and abiotic factors. In plants there is a multicomponent protection system, including the formation of protective barriers, activation the reaction of hypersensitivity and synthesis of antimicrobial peptides, which are low molecular weight compounds showing broad spectrum activity against fungi, bacteria and viruses. This group consists of several groups of peptides, including defensins, which are one of the most common classes of antimicrobial peptides and are detectable in all living organisms. Defensins are small (45-54 amino acids), cysteine-rich peptides involved in a different protective responses (B.P. Thomma et al., 2002). Genes which are coding plant defensins are expressed in different organs of plants, where their products are necessary for biotic and abiotic stresses. Thus, these peptides are extremely important in terms of getting crop lines that are resistant to pathogens and abiotic stresses. Defensins are characterized by a strong sequence variability that seems to correlate with a variety of mechanisms of action of these peptides that can induce pathogen’s cell death by penetrating into a cell or by being on its surface (T.M. Shafee et al., 2016). Most of the plant defensins are characterized by the antifungal activity. Some defensins have antibacterial activity, which may be combined with activity against fungi. For a small number of plant defensins their participation in the processes of resistance to heavy metals, cold stress, drought, salinity, and in the development process is indicated. Modern approaches of molecular and computational biology allow an effective search for new forms of defensins activity by studying the wild, non-model plant objects. The development of next-generation sequencing methods («Next Generation Sequencing») make possible the intensive study of the transcriptomes of such objects. However, the correct annotation of the sequences of peptides, characterized by small size and high variability, can be done by usage the special programs, such as SPADA (Small Peptide Alignment Discovery Application) (P. Zhou et al., 2013). SPADA makes multiple sequence alignment of all known paralogous genes within a gene family and builds a predictive model for the search of new members of the same family. Prediction of newly identified active defensins and identification of conserved amino acids can also be performed by computational biology methods. An approach based on a multiple sequence alignment and subsequent cluster analysis allows dividing defensins into groups with similar functional activity (N.L. van der Weerden et al., 2013). Thus, the combination of modern methods of molecular and computational biology allows carrying out the study of this group of protective peptides with high efficiency.

Keywords: defensins, cysteine-rich peptides, defense reactions, biotic and abiotic stress, next-generation sequencing.


Full article (Rus)

Full text (Eng)



  1. Goyal R.K., Mattoo A.K. Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress. Plant Sci., 2014, 228: 135-149 CrossRef
  2. Tam J.P., Wang S., Wong K.H., Tan W.L. Antimicrobial peptides from plants. Pharmaceuticals, 2015, 8(4): 711-757 CrossRef
  3. Egorov T.A., Odintsova T.I. Defense peptides of plant immune system. Russian Journal of Bioorganic Chemistry, 2012, 38(1): 1-9 CrossRef
  4. Thomma B.P., Cammue B.P., Thevissen K. Plant defensins. Planta, 2002, 216(2): 193-202 CrossRef
  5. Stotz H.U., Thomson J., Wang Y. Plant defensins: defense, development and application. Plant Signal. Behav., 2009, 4(11): 1010-1012 CrossRef
  6. Komaletdinova F.M. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2009, 5: 8-16 (in Russ.).
  7. Bruix M., Jimenez M.A., Santoro J., Gonzalez C., Colilla F.J., Mendez E., Rico M. Solution structure of gamma 1-H and gamma 1-P thionins from barley and wheat endosperm determined by proton NMR: a structural motif common to toxic arthropod proteins. Biochemistry, 1993, 32(2): 715-724 CrossRef
  8. Fant F., Vranken W., Broekaert W., Borremans F. Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by 1 H NMR. J. Mol. Biol., 1998, 279(1): 257-270 CrossRef
  9. Do H.M., Lee S.C., Jung H.W., Sohn K.H., Hwang B.K. Differential expression and in situ localization of a pepper defensin (CADEF1) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Plant Sci., 2004, 166(5): 1297-1305 CrossRef
  10. Huang G.-J., Lai H.-C., Chang Y.-S., Sheu M.-J., Lu T.-L., Huang S.-S., Lin Y.-H. Antimicrobial, dehydroascorbate reductase, and monodehydroascorbate reductase activities of defensin from sweet potato [Ipomoea batatas (L.) Lam."tainong 57"] storage roots. J. Agric. Food Chem., 2008, 56(9): 2989-2995 CrossRef
  11. Lay F.T., Brugliera F., Anderson M.A. Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant Physiol., 2003, 131(3): 1283-1293 CrossRef
  12. Urdangarín M.C., Norero N.S., Broekaert W.F., de la Canal L. A defensin gene expressed in sunflower inflorescence. Plant Physiol. Biochem., 2000, 38(3): 253-258 CrossRef
  13. Maróti G., Downie J.A., Kondorosi É. Plant cysteine-rich peptides that inhibit pathogen growth and control rhizobial differentiation in legume nodules. Curr. Opin. Plant Biol., 2015, 26: 57-63 CrossRef
  14. Chiang C.C., Hadwiger L.A. The Fusarium solani-Induced expression of a pea gene family encoding high cysteine content proteins. Mol. Plant-Microbe Interact., 1991, 4(4): 324-331 CrossRef
  15. Lacerda A., Vasconcelos É.A.R., Pelegrini P.B., Grossi-de-Sa M.F. Antifungal defensins and their role in plant defense. Front. Microbiol., 2014, 5: 116 CrossRef
  16. Franco O.L., Murad A.M., Leite J.R., Mendes P.A., Prates M.V., Bloch C. Identification of a cowpea γ-thionin with bactericidal activity. FEBS J., 2006, 273(15): 3489-3497 CrossRef
  17. Zhang Y., Lewis K. Fabatins: new antimicrobial plant peptides. FEMS Microbiol. Lett., 1997, 149(1): 59-64 CrossRef
  18. Melo F.R., Rigden D.J., Franco O.L., Mello L.V., Ary M.B., Grossi de Sá M.F., Bloch C. Inhibition of trypsin by cowpea thionin: Characterization, molecular modeling, and docking. Proteins: Struct., Funct., Bioinf., 2002, 48(2): 311-319 CrossRef
  19. Mirouze M., Sels J., Richard O., Czernic P., Loubet S., Jacquier A., François I.E.J.A., Cammue B.P.A., Lebrun M., Berthomieu P., Marquès L. A putative novel role for plant defensins: a defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance. Plant J., 2006, 47(3): 329-342 CrossRef
  20. Gaudet D.A., Laroche A., Frick M., Huel R., Puchalski B. Cold induced expression of plant defensin and lipid transfer protein transcripts in winter wheat. Physiologia Plantarum, 2003, 117(2): 195-205 CrossRef
  21. Koike M., Okamoto T., Tsuda S., Imai R. A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation. BBRC, 2002, 298(1): 46-53 CrossRef
  22. Stolf-Moreira R., Medri M.E., Neumaier N., Lemos N.G., Brogin R.L., Marcelino F.C., De Oliveira M.C.N., Farias J.R.B., Abdelnoor R.V., Nepomuceno A.L. Cloning and quantitative expression analysis of drought-induced genes in soybean. Genet. Mol. Res., 2010, 9(2): 858-867 CrossRef
  23. Sui J., Jiang D., Zhang D., Song X., Wang J., Zhao M., Qiao L. The salinity responsive mechanism of a hydroxyproline-tolerant mutant of peanut based on digital gene expression profiling analysis. PloS ONE, 2016, 11(9): e0162556 CrossRef
  24. Nishiyama R., Le D.T., Watanabe Y., Matsui A., Tanaka M., Seki M., Yamaguchi-Shinozaki K., Shinozaki K., Tran L.S.P. Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PLoS ONE, 2012, 7(2): e32124 CrossRef
  25. Okuda S., Tsutsui H., Shiina K., Sprunck S., Takeuchi H., Yui R., Kasahara R.D., Hamamura Y., Mizukami A., Susaki D., Kawano N., Sakakibara T., Namoki S., Itoh K., Otsuka K., Matsuzaki M., Nozaki H., Kuroiwa T., Nakano A., Kanaoka M.M., Dresselhaus T., Sasaki N., Higashiyama T. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature, 2009, 458(7236): 357-361 CrossRef
  26. Shafee T.M., Lay F.T., Hulett M.D., Anderson M.A. The defensins consist of two independent, convergent protein superfamilies. Mol. Biol. Evol., 2016, 33(9): 2345-2356 CrossRef
  27. Almeida M.S., Cabral K.M., Kurtenbach E., Almeida F.C., Valente A.P. Solution structure of Pisum sativum defensin 1 by high resolution NMR: plant defensins, identical backbone with different mechanisms of action. J. Mol. Biol., 2002, 315(4): 749-757 CrossRef
  28. Broekaert W.F., Terras F.R., Cammue B.P., Osborn R.W. Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol., 1995, 108(4): 1353-1358 CrossRef
  29. van der Weerden N.L., Anderson M.A. Plant defensins: common fold, multiple functions. Fungal Biol. Rev., 2013, 26(4): 121-131 CrossRef
  30. Méndez E., Rocher A., Calero M., Girbés T., Citores L., Soriano F. Primary structure of omega-hordothionin, a member of a novel family of thionins from barley endosperm, and its inhibition of protein synthesis in eukaryotic and prokaryotic cell-free systems. Eur. J. Biochem., 1996, 239(1): 67-73 CrossRef
  31. Gao A.-G., Hakimi S.M., Mittanck C.A., Wu Y., Woerner B.M., Stark D.M., Shah D.M., Liang J., Rommens C.M. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat. Biotechnol., 2000, 18(12): 1307-1310 CrossRef
  32. Terras F.R., Eggermont K., Kovaleva V., Raikhel N.V., Osborn R.W., Kester A., Rees S.B., Torrekens S., Van Leuven F., Vanderleyden J. Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell, 1995, 7(5): 573-588 CrossRef
  33. Spelbrink R.G., Dilmac N., Allen A., Smith T.J., Shah D.M., Hockerman G.H. Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. Plant Physiol., 2004, 135(4): 2055-2067 CrossRef
  34. Janssen B.J., Schirra H.J., Lay F.T., Anderson M.A., Craik D.J. Structure of Petunia hybrida defensin 1, a novel plant defensin with five disulfide bonds. Biochemistry, 2003, 42(27): 8214-8222 CrossRef
  35. Lobo D.S., Pereira I.B., Fragel-Madeira L., Medeiros L.N., Cabral L.M., Faria J., Bellio M., Campos R.C., Linden R., Kurtenbach E. Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle. Biochemistry, 2007, 46(4): 987-996 CrossRef
  36. Stolf-Moreira R., Medri M.E., Neumaier N., Lemos N.G., Pimenta J.A., Tobita S., Brogin R.L., Marcelino-Guimarães F.C., Oliveira M.C.N., Farias J.R.B., Abdelnoor R.V., Nepomuceno A.L. Soybean physiology and gene expression during drought. Genet. Mol. Res., 2010, 9(4): 1946-1956 CrossRef
  37. Mith O., Benhamdi A., Castillo T., Berge M., MacDiarmid C.W., Steffen J., Eide D.J., Perrier V., Subileau M., Gosti F., Berthomieu P., Marques L. The antifungal plant defensin AhPDF1.1b is a beneficial factor involved in adaptive response to zinc overload when it is expressed in yeast cells. MicrobiologyOpen, 2015, 4(3): 409-422 CrossRef
  38. Oomen R.J., Séveno-Carpentier E., Ricodeau N., Bournaud C., Conéjéro G., Paris N., Berthomieu P., Marquès L. Plant defensin AhPDF1.1 is not secreted in leaves but it accumulates in intracellular compartments. New Phytol., 2011, 192(1): 140-150 CrossRef
  39. Shahzad Z., Ranwez V., Fizames C., Marquès L., Martret B., Alassimone J., Godé C., Lacombe E., Castillo T., Saumitou-Laprade P., Berthomieu P., Gosti F. Plant Defensin type 1 (PDF1): protein promiscuity and expression variation within the Arabidopsis genus shed light on zinc tolerance acquisition in Arabidopsis halleri. New Phytol., 2013, 200(3): 820-833 CrossRef
  40. Nguyen N.N., Ranwez V., Vile D., Soulié M.-C., Dellagi A., Expert D., Gosti F. Evolutionary tinkering of the expression of PDF1s suggests their joint effect on zinc tolerance and the response to pathogen attack. Front. Plant Sci., 2014, 5: 70 CrossRef
  41. Ahmed N.U., Park J.-I., Jung H.-J., Seo M.-S., Kumar T.S., Lee I.-H., Nou I.-S. Identification and characterization of stress resistance related genes of Brassica rapa. Biotechnol. Lett., 2012, 34(5): 979-987 CrossRef
  42. Cabot C., Gallego B., Martos S., Barceló J., Poschenrieder C. Signal cross talk in Arabidopsis exposed to cadmium, silicon, and Botrytis cinerea. Planta, 2013, 237(1): 337-349 CrossRef
  43. Bahramnejad B., Erickson L.R., Chuthamat A., Goodwin P.H. Differential expression of eight defensin genes of N. benthamiana following biotic stress, wounding, ethylene, and benzothiadiazole treatments. Plant Cell Rep., 2009, 28(4): 703-717 CrossRef
  44. Wilmes M., Cammue B.P., Sahl H.-G., Thevissen K. Antibiotic activities of host defense peptides: more to it than lipid bilayer perturbation. Nat. Prod. Rep., 2011, 28(8): 1350-1358 CrossRef
  45. Poon I.K., Baxter A.A., Lay F.T., Mills G.D., Adda C.G., Payne J.A., Phan T.K., Ryan G.F., White J.A., Veneer P.K., van der Weerden N., Anderson M.A., Kvansakul M., Hulett M.D. Phosphoinositide-mediated oligomerization of a defensin induces cell lysis. Elife, 2014, 3: e01808 CrossRef
  46. Terras F.R., Schoofs H.M., De Bolle M.F., Van Leuven F., Rees S.B., Vanderleyden J., Cammue B.P., Broekaert W.F. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J. Biol. Chem., 1992, 267(22): 15301-15309.
  47. Thevissen K., Cammue B.P., Lemaire K., Winderickx J., Dickson R.C., Lester R.L., Ferket K.K., Van Even F., Parret A.H., Broekaert W.F. A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii). PNAS, 2000, 97(17): 9531-9536 CrossRef
  48. Thevissen K., Warnecke D.C., François I.E., Leipelt M., Heinz E., Ott C., Zähringer U., Thomma B.P., Ferket K.K., Cammue B.P. Defensins from insects and plants interact with fungal glucosylceramides. J. Biol. Chem., 2004, 279(6): 3900-3905 CrossRef
  49. Thevissen K., Ferket K.K., François I.E., Cammue B.P. Interactions of antifungal plant defensins with fungal membrane components. Peptides, 2003, 24(11): 1705-1712 CrossRef
  50. Thevissen K., de Mello Tavares P., Xu D., Blankenship J., Vandenbosch D., Idkowiak-Baldys J., Govaert G., Bink A., Rozental S., de Groot P.W.J., Davis T.R., Kumamoto C.A., Vargas G., Nimrichter L., Coenye T., Mitchell A., Roemer T., Hannun Y.A., Cammue B.P.A. The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans. Mol. Microbiol., 2012, 84(1): 166-180 CrossRef
  51. Ramamoorthy V., Cahoon E.B., Li J., Thokala M., Minto R.E., Shah D.M. Glucosylceramide synthase is essential for alfalfa defensin-mediated growth inhibition but not for pathogenicity of Fusarium graminearum. Mol. Microbiol., 2007, 66(3): 771-786 CrossRef
  52. Vriens K., Cammue B., Thevissen K. Antifungal plant defensins: mechanisms of action and production. Molecules, 2014, 19(8): 12280-12303 CrossRef
  53. Sagaram U.S., El-Mounadi K., Buchko G.W., Berg H.R., Kaur J., Pandurangi R.S., Smith T.J., Shah D.M. Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: identification of an RGFRRR motif governing fungal cell entry. PLoS ONE, 2013, 8(12): e82485 CrossRef
  54. Aerts A.M., François I.E., Bammens L., Cammue B., Smets B., Winderickx J., Accardo S., De Vos D.E., Thevissen K. Level of M (IP) 2C sphingolipid affects plant defensin sensitivity, oxidative stress resistance and chronological life-span in yeast. FEBS Lett., 2006, 580(7): 1903-1907 CrossRef
  55. van der Weerden N.L., Lay F.T., Anderson M.A. The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae. J. Biol. Chem., 2008, 283(21): 14445-14452 CrossRef
  56. Mello E.O., Ribeiro S.F., Carvalho A.O., Santos I.S., Da Cunha M., Santa-Catarina C., Gomes V.M. Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr. Microbiol., 2011, 62(4): 1209-1217 CrossRef
  57. Aerts A.M., Bammens L., Govaert G., Carmona-Gutierrez D., Madeo F., Cammue B., Thevissen K. The antifungal plant defensin HsAFP1 from Heuchera sanguinea induces apoptosis in Candida albicans. Front. Microbiol., 2011, 2: 47 CrossRef
  58. Zhukov V.A., Kulaeva O.A., Zhernakov A.I., Tikhonovich I.A. «Next generation sequencing» for studying transcriptome profiles of tissues and organs of garden pea (Pisum sativum L.) (review). Agricultural Biology, 2015, 50(3): 278-287 CrossRef (in Engl.).
  59. Zhukov V.A., Zhernakov A.I., Kulaeva O.A., Ershov N.I., Borisov A.Y., Tikhonovich I.A. De novo assembly of the pea (Pisum sativum L.) nodule transcriptome. Int. J. Genomics, 2015, 2015: 695947 CrossRef
  60. Conesa A., Madrigal P., Tarazona S., Gomez-Cabrero D., Cervera A., McPherson A., Szczesniak M.W., Gaffney D.J., Elo L.L., Zhang X., Mortazavi A. A survey of best practices for RNA-seq data analysis. Genome Biology, 2016, 17: 13 CrossRef
  61. Zhou P., Silverstein K.A., Gao L., Walton J.D., Nallu S., Guhlin J., Young N.D. Detecting small plant peptides using SPADA (small peptide alignment discovery application). BMC Bioinformatics, 2013, 14: 335 CrossRef
  62. Shafee T.M., Robinson A.J., Weerden N., Anderson M.A. Structural homology guided alignment of cysteine rich proteins. SpringerPlus, 2016, 5: 27 CrossRef
  63. Alves-Carvalho S., Aubert G., Carrere S., Cruaud C., Brochot A.-L., Jac-
    quin F., Klein A., Martin C., Boucherot K., Kreplak J., da Silva C., Moreau S., Gamas P., Wincker P., Gouzy J., Burstin J. Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. Plant J., 2015, 84(1): 1-19 CrossRef
  64. He J., Benedito V.A., Wang M., Murray J.D., Zhao P.X., Tang Y., Udvardi M.K. The Medicago truncatula gene expression atlas web server. BMC Bioinformatics, 2009, 10: 441 CrossRef