doi: 10.15389/agrobiology.2017.1.183eng

UDC 635.25:574.24:576.316

 

CYTOGENETIC EFFECTS IN Allium сepa L. RESULTED FROM
SEPARATE AND COMBINED EXPOSURE TO Cu, Zn and Ni

L.N. Ul’yanenko1, E.V. Reva2, B.I. Synzynys2

1A.F. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 4, ul. Koroleva, Obninsk, Kaluga Province, 249036 Russia,
e-mail oulianenko@yandex.ru;
2Obninsk Institute for Nuclear Power Engineering — Branch of the National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 1, Studgorodok, Obninsk, Kaluga Province, 249040 Russia,
e-mail revka@inbox.ru, synzynys@obninsk.ru

Received January 18, 2016

 

Heavy metal contaminations of agricultural lands necessitate the study of phyto- and genotoxic effects in plants of different types. The impact of elevated concentrations of biologically essential metals, e.g. Cu and Zn, and the metals with a pronounced toxic effect even at low concentrations is of special importance. Generally, the model objects (e.g. Allium cepa L.) are used to simulate the impact of one of the metals. In this case the concentration chosen is greater (100 times or more) than the levels of actual contamination and maximum permissible concentrations in different environments. Data on the combined action of metals at concentrations actually existing in the environment are practically not reported, which prevents the development of standards to limit their impact on ecosystems and agrobiocenoses. Our objective was to compare the cytogenetic changes in the root meristem of Allium cepa exposed to different concentrations of Cu, Zn and Ni separately and combinedly. Experiments were carried out in 4-fold replication. The roots of onion plants (10 per replication) were germinated in distilled water (control) or Cu(NO3)2·3H2O, Zn(NO3)2·6H2O and Ni(NO3)2·6H2O solutions. Salt concentrations corresponded to the maximum permissible concentrations in water for fish-farming (Сu — 0.001 mg/l, Ni and Zn — 0.01 мg/l) and for household purposes (Сu and Zn — 1.0 mg/l, Ni — 0.02 mg/l). Chromosome aberrations were viewed in 180-790 cells of onion root tips in fresh crush preparations after acetic-orcein staining. We estimated the mitotic index calculated as the fraction of mitotic cells to the total number of cells in the root meristem, the frequency of aberrant cells, and the types of chromosomal aberrations. The influence of each element and their various combinations on cytogenetic parameters was compared that allowed us to determine the coefficient of antagonism. It has been shown that Cu, Zn and Ni ions, as depending on their properties, inhibited cell division in onion root meristem to varying degrees. At relatively low concentrations of metals, equal to the MPC in water for fish-farming, the frequency aberrant cells was about 3 to 7 times higher as compared to the control. An increased metal concentrations (1000-fold, 100-fold, and 2-fold for Cu, Zn and Ni, respectively) did not lead to a proportional increase in the frequency of aberrant cells which was only two times as much as that in control. Changes in the mitotic index were also disproportionate to the metal concentration in the solution. When combined, the metal ions had lower genotoxic effect as compared to their individual activity. The differences between separate and combined effects are indicative of ion competition. The calculated coefficients of antagonism in the experiment ranged from 0.20 to 0.40.

Keywords: Allium cepa L., heavy metals, genotoxic effect, coefficients of antagonism.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Borisochkina T.I., Vodyanitskii Yu.N. Byulleten' Pochvennogo instituta im V.V. Dokuchaeva, 2007, 60: 82-89 (in Russ.). 
  2. Chernykh N.A., Ovcharenko M.M. Tyazhelye metally i radionuklidy v biogeotsenozakh [Heavy metals and radionuclides in ecosystems]. Moscow, 2002 (in Russ.).
  3. Fjällborg B., Li B., Nilsson E., Dave G. Toxicity identification evaluation of five metals performed with two organisms (Daphnia magna and Latuca sativa). Arch. Environ. Contam. Toxicol., 2006, 50: 196-204 CrossRef
  4. Ul'yanenko L.N., Filipas A.S., Loi N.N., Stepanchikova N.S., Kruglov S.V. Agrokhimiya, 2010, 3: 70-74 (in Russ.).
  5. Kolesnikov S.I., Evreinova A.V., Kazeev K.Sh., Val'kov V.F. Pochvovedenie, 2009, 8: 1007-1013 (in Russ.).
  6. Vodyanitskii Yu.N. Tyazhelye i sverkhtyazhelye metally i metalloidy v pochvakh [Heavy metals, super heavy elements and metalloids in soils]. Moscow, 2009 (in Russ.).
  7. Barcukova V.S. Fiziologo-geneticheskie aspekty ustoichivosti rastenii k tyazhelym metallam. Analiticheskii obzor [Physiolofical and genetic aspects of plant resistance to heavy metals — an analytical review]. Novosibirsk, 1997 (in Russ.).
  8. Amosova N.V., Tazina I.A., Synzynys B.I. Fito- i genotoksicheskoe deistviya ionov zheleza, kobal'ta i nikelya na fiziologicheskie pokazateli rastenii razlichnykh vidov. Sel'skokhozyaistvennaya biologiya, 2003, 5: 49-54 (in Russ.).
  9. Sanita di Toppi L., Gabbrielli R. Response to cadmium in higher plants. Environ. Ekhr. Vot., 1999, 41: 105-130 CrossRef
  10. Synzynys B.I., Amosova N.V., Ulyanenko L.N. Sensitivity of barley varieties to aluminum ions: separately effects and combine with iron ions. American Journal of Plant Sciences, 2013, 4: 49-52 CrossRef
  11. Amosova N.V., Synzynys B.I. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2005, 1: 85-87 (in Russ.).
  12. Amosova N.V., Synzynys B.I., Ul'yanenko L.N. Doklady RASKHN, 2005, 5: 65-71 (in Russ.).
  13. White P.A., Claxton L.D. Mutagens in contaminated soil: a review. Mutat. Res., 2004, 567: 227-345 CrossRef
  14. Kasprzak K.S., Sunderman F.W. Jr., Salnikow K. Nickel carcinogenesis. Mutat. Res., 2003, 533: 67-97 CrossRef
  15. Yildiza M., Cigerci I.H., Konuk M., Fidan A.F. Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and comet assays. Chemosphere, 2009, 375: 934-938 CrossRef
  16. Dovgalyuk A.I., Kalinyak T.B., Blyum Ya.B. Tsitologiya i genetika, 2001, 35(2): 3-10 (in Russ.).
  17. Garipova R.F. Biotestirovanie i ekoanaliz v monitoringe territorii, podverzhennykh mikroelementnomu zagryazneniyu. Avtoreferat doktorskoi dissertatsii [Bioassay and environmental analysis in control of the areas contaminated with heavy metals. DSci Thesis]. Orenburg, 2011 (in Russ.). 
  18. Oganesyan G.G., Simonyan A.E., Gabrielyan B.K., Minasyan S.G., Arutyunyan R.M. Biologicheskii zhurnal Armenii, 2012, 4: 64-70 (in Russ.).
  19. Vasil'eva N.V. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2014, 6: 13-17 (in Russ.).
  20. Meharg A.A. Mechanism of plant resistance to metal and metabolloid ions and potential biotechnological applications. Plant Soil, 2005, 274: 163-174 CrossRef
  21. Clemens S., Palmgren M.G., Kramer U. A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci., 2002, 7: 309-315 CrossRef
  22. Haydon M.J., Cobbet C.S. Transporters of ligands for essential metal ions in plants. New Phytol., 2007, 174: 499-506 CrossRef
  23. Dunbar K.R., McLaughlin M.J. The uptake and partitioning of cadmium in two cultivars of potato (Solanum tuberosum L.). J. Exp. Bot., 2003, 54(381): 349-354 CrossRef
  24. Page V., Feller U.R.S. Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system to the leaves in young wheat plants. Ann. Bot., 2005, 96: 425-434 CrossRef
  25. Haydon M.J., Cobbet C.S. A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. Plant Physiol., 2007, 143: 1705-1719 CrossRef
  26. Devi S.R., Prasad M.N.L. Antiokhidant capacity of Brassica juncea plants exposed to elevated levels of copper. Rus. J. Plant Physiol., 2005, 52(2): 205-208.
  27. Lerda D., Biagi Bistoni M., Pelliccioni P., Litterio N. Allium cepa as a biomonitor of ochratoxin A toxicity and genotoxicity. Plant Biol., 2010, 58: 1-4.
  28. Olorunfemi D., Iogieseri U.M., Akinboro A. Genotoxicity screening of industrial effluents using onion bulbs (Allium cepa L.). Journal of Applied Sciences and Environmental Management, 2011, 211-216 CrossRef
  29. Leme D.M., Marin-Morales M.A. Chromosome aberration and micronucleus frequencies in Allium cepa cells exposed to petroleum polluted water — a case study. Mutat. Res., 2008, 650: 80-86 CrossRef
  30. Pausheva Z.P. Praktikum po tsitologii rastenii [Practical works in plant cytology]. Moscow, 1988 (in Russ.).
  31. Petin V.G., Synzynys B.I. Kombinirovannoe vozdeistvie faktorov okruzhayushchei sredy na biologicheskie sistemy [The combined impact of environmental factors on biological systems]. Obninsk, 1998 (in Russ.).
  32. Geras’kin S.A., Kim J.K., Dikarev V.G., Oudalova A.A., Dikareva N.S., Spirin Ye.V. Cytogenetic effects of combined radioactive (137Ss) and chemical (Cd, Pb, and 2,4-D herbicide) contamination on spring barley intercalar meristem cells. Mutat. Res., 2005, 586: 147-159 CrossRef
  33. Stepanchikova N.S., Ul’yanenko L.N., Filipas A.S., Kruglov S.V. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2008, 5: 28-32 (in Russ.).
  34. Titov A.F., Talanova V.V., Kaznina N.M., Laidinen G.F. Ustoichivost' rastenii k tyazhelym metallam [Plant resistance to heavy metals]. Petrozavodsk, 2007 (in Russ.).

back