doi: 10.15389/agrobiology.2017.1.211eng

UDC 634.13: 631.527:57.087.1



N.S. Kiseleva

All-Russian Research Institute of Floriculture And Subtropical Crops, Federal Agency of Scientific Organizations, 2/28, ul. Yana Fabritsiusa, Sochi, 354002 Russia

Kiseleva N.S.

Received December 18, 2015

Morphological study of foliage in fruit crops are mainly conducted to study photosynthetic activity as related to leaf area. Currently, there are different methods to determine this parameter with varying accuracy. In the paper, we first compared the accuracy of assessing leaf area in pear by two methods based on a relationship between the leaf size (S) and its linear dimensions, the length (L) and the width (W). These ways were the use of a conversion factor (correction coefficient) and the regression analysis. The following 10 pear genotypes of different ripening were involved to measure the leaf linear parameters: Pirus communis L. — varieties Beurre Giffard, Vega (early ripening); varieties Williams, Chernomorskaya Yantarnaya (summer ripening); Beurre Bosk, Rassvet, hybrid № 8520, Nart; Pirus serotina Rehd. — varieties Kilchu and Choo-chen-sok (autumn ripening). The correction by means of conversion factor was based on a similarity of the investigated leaf shape to relevant geometrical figure. Under this model, the leaf area calculation as S = 0.69 × (LW) was the most exact. This formula allows us to fast and exactly estimate the intact leaf size in pear trees and in other fruit crops with the same leaf shape to determine its changes throughout long time without destruction. Under the regression analysis procedure, the independent variables were L, W, L2, W2, and LW. Of these, the latter (LW) was optimum, resulting in a linear regression equation Y = 0,922581 + 0,660898 × (LW) based on which the MS Excel 7.0 program has been developed. This program allows us to find the sum of leaf areas or to determine an individual leaf area. Additionally, we found the indicators of leaf size and shape, and the averages for the sample, and also suggested graphics displaying leaf area. The scale for estimation was developed as a nomogram. Radial diagram with the special scale marked as area units against L and W units was also offered to simplify extensive research when more than 50-100 estimations required. Thus, due to close positive correlation between leaf linear dimensions and area, it is possible to practically apply conversion factor and regression equations, including developed nomogram and radial diagram, for calculation of leaf areas with the minimum error under natural conditions. The developed models may be helpful to measure area of oval, ovoid and unlobed leaves in southern fruit crops (e.g. apple, pear, cherry, plum), subtropical crops (citrus, feijoa, persimmon, tea), and ornamental wood bushes and grassy plants used for landscape gardening. Computerized technology promotes acceleration and simplification of the calculations.

Keywords: pear, Pirus communis L., Pirus serotina Rehd., genotype, leaf plate, leaf length, leaf width, leaf area, conversion factor, regression analysis.


Full article (Rus)

Full text (Eng)



  1. Forest Ecology: recent advances in rlant ecology. A.G. Van der Valk. Springer, 2009 CrossRef
  2. Gibson J.P., Gibson T.R. Plant ecology. NY, 2006.
  3. Schulze E.-D., Beck E., Muller-Hohenstein K. Plant ecology. Springer, Berlin, 2005.
  4. Fulga I.G. Izuchenie fotosinteticheskoi poverkhnosti rastenii [Study of photosynthetic plant area]. Kishinev, 1961 (in Russ.).
  5. Ackley W., Crandall P., Russel T. The use of linear measurements in estimating leaf areas. Proc. Amer. Soc. Hort. Sci., 1958, 72: 326-330.
  6. Blanco F., Folegatti M. A new method for estimating the leaf area index of cucumber and tomato plants. Hortic. Bras., 2003, 21(4): 666-669 CrossRef
  7. Dryannykh N.M., Korsakova T.I., Petrenko E.S. V sbornike: Prostranstvenno-vremennaya struktura lesnykh biogeotsenozov [Spatiotemporal structure of forest ecosystems]. Novosibirsk, 1981: 76-81 (in Russ.).
  8. Utkin A.I., Ermolova L.S., Utkina I.A. Ploshchad' poverkhnosti lesnykh rastenii: sushchnost', parametry, ispol'zovanie [Area of forest plants — essence, prameters, use]. Moscow, 2008 (in Russ.).
  9. Konyaev N.F. Doklady VASKHNIL, 1970, 9: 43-46 (in Russ.).
  10. Volkov V.Ya., Selevtsev V.F. Fiziologiya rastenii, 1959, 6(5): 627-630 (in Russ.).
  11. Robbins N.S., Pharr D.M. Leaf area prediction models for cucumber from linear measurements. Hortic. Sci., 1987, 22(6): 1264-1266.
  12. Filonov V.B. Materialy II nauchnoi konferentsii molodykh uchenykh-sadovodov Kazakhstana «Intensifikatsiya plodovodstva i vinogradarstva» [Proc. II Conf. «The intensification of horticulture and viticulture»]. Alma-Ata, 1974: 91-93 (in Russ.).
  13. Kiseleva N.S Materialy nauchno-prakticheskoi konferentsii «Subtropicheskoe sadovodstvo Rossii i osnovnye napravleniya nauchnogo obespecheniya ego razvitiya do 2010 goda» [Proc. Conf. «Subtropical horticulture in Russia and the basic aspects of scientific support for its development until 2010»]. Sochi, 2004: 145-148 (in Russ.).
  14. Programma i metodika sortoizucheniya plodovykh, yagodnykh i orekhoplodnykh kul'tur /Pod redaktsiei E.N. Sedova, T.P. Ogol'tsovoi [Program and methods of studying varieties of fruit, berry and nut crops. E.N. Sedov, T.P. Ogol’tsova (eds.)]. Orel, 1999 (in Russ.).
  15. Prosunko V.M., Kozel A.I. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 1979, 14(26): 232-234 (in Russ.).
  16. Nikolenko V.V., Kotov S.F. Uchenye zapiski Tavricheskogo natsional'nogo universiteta imeni V.I. Vernadskogo. Seriya Ekosistemy, ikh optimizatsiya i okhrana, 2010, 2: 99-105 (in Russ.).
  17. Fedoryako N.I. Morfobiologicheskie osobennosti i matematicheskaya interpretatsiya parametrov list'ev sortov zemlyaniki v usloviyakh TSCHR. Avtoreferat kandidatskoi dissertatsii [Morphobiological characterization of strawberry leaves and its mathematical interpretation for different varieties under the conditions of Central Russia. PhD Thesis]. Michurinsk, 2004 (in Russ.).
  18. Gamiely S., Randle W.M., Miks H.A., Smittle D.A. A rapid and nondestructive method for estimating leaf area of onions. Hortic. Sci., 1991, 26(2): 206-210.
  19. Bakhshandeh E., Kamkar B., Tsialtas J.T. Application of linear models for estimation of leaf area in soybean [Glycine max (L.) Merr]. Photosynthetica, 2011, 49: 405 CrossRef
  20. Kandiannan K., Kailasam C., Chandaragiri K.K., Sankaran N. Allometric model for leaf area estimation in black pepper (Piper nigrum L.). J. Agron. Crop Sci., 2002, 188: 138-140.
  21. Uzun S., Çelik H. Leaf area prediction models (Uzçelik-I) for different horticultural plants. Turk. J. Agric. For., 1999, 23: 645-650.
  22. McKee G.W. A soefficient for computing leaf area in hybrid corn. Agron. J., 1964, 56: 240-241.
  23. Sazhin Yu.V., Basova V.A. Mnogomernye statisticheskie metody [Multivariate statistical methods]. Moscow, 2002 (in Russ.).
  24. Potapov V.A., Bobrovich L.V., Polyanskii N.A., Andreeva N.V. Materialy Mezhdunarodnoi nauchno-metodicheskoi konferentsii [Proc. Science Methodol. Conf.]. Michurinsk, 1998: 28-31 (in Russ.).
  25. Anik'ev A.A., Fedoryaka N.I., Pchelintsev S.A. Mezhdunarodnaya nauchno-prakticheskaya konferentsiya «Agropromyshlennyi kompleks: problemy i perspektivy» [Proc. Conf. «Agriculture: problems and prospects»]. Michurinsk, 2001, V. 3: 194-196 (in Russ.).
  26. Markovskaya E.F., Sysoeva M.I., Trofimova S.A., Kurets V.K. Matematicheskie metody opredeleniya nekotorykh biometricheskikh pokazatelei u rastenii [Mathematical estimation of biometric parameters in plants]. Petrozavodsk, 1988 (in Russ.).
  27. Bozhko N.V. Vestnik sel'skokhozyaistvennoi nauki, 1973, 28(1): 21-22 (in Russ.).
  28. Berson G.Z., Nazarova M.L. Fundamental'nye issledovaniya, 2008, 8: 60-61 (in Russ.).
  29. Moiseichenko V.F., Zaveryukha A.X., Trifonova M.F. Osnovy nauchnykh issledovanii v plodovodstve, ovoshchevodstve i vinogradarstve [Basic research in horticulture, olericulture and viticulture]. Moscow, 1994: 130-133 (in Russ.).