doi: 10.15389/agrobiology.2017.1.13eng

UDC 581.1:57.044:546.55/.59:539.2

Supported partly by Russian Foundation for Basic Research (projects № 14-04-00114 and №16-04-00520).



L.A. Dykman, S.Yu. Shchyogolev

Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, Federal Agency of Scientific Organizations, 13, prosp. Entuziastov, Saratov, 410049 Russia,


Received June 23, 2016


Gold and silver nanoparticles are used in a variety of biomedical practice as carriers of drugs, enhancers and/or converters of optical signal, immunomarkers, etc. The review examines a decade publications (2007-2016) pertaining to the various influence of nanoparticles of noble metals (gold and silver) on growth and productivity of higher plants. In fact, possible phytotoxicity of these nanoparticles is being actively studied for over 10 years. The topicality of this field of research is due to the detection of a number of natural and human-caused factors resulting in interactions of plants with nanoparticles (B.P. Colman et al., 2013; N.G. Khlebtsov et al., 2011). A positive or negative impact of nanoparticles on plants is little known, and the information is very contradictory (P. Man-chikanti et al., 2010; M. Carrière et al., 2012; C. Remédios et al., 2012; N. Zuverza-Mena et al., 2016). In the study both model (Arabidopsis thaliana) and cultivated plants (soy, canola, beans, rice, radish, tomato, pumpkin, etc.) were involved. The discussed data are indicative of both positive and negative effects of metal nanoparticles on plants, as well as of the chemical nature, size, shape, surface charge, and the dose introduced being the major factors that are responsible for the processes of intracellular nanoparticle penetration. In general terms, it was mentioned that silver nanoparticles were more toxic as compared to gold ones being due to more active silver ion diffusion from the silver nanoparticle surface. Silver ions are known to inhibit effectively biosynthesis of ethylene — a phytohormone controlling processes of plant stress, aging etc., wherein gold ions do not influence ethylene biosynthesis and signaling. Considered all, metal ion toxicity exceeds considerably a toxicity of nanoparticles. The mechanism of the nanoparticle phytotoxic action is often connected with accumulation of active oxygen species in plant tissues. The use of cell suspension cultures may be a promising approach to study plant-nanoparticles interaction (E. Planchet et al., 2015). The period during which these studies are conducted is still small for elucidating all aspects with regard to biosafety. Contradictory (often conflicting) information on the impact of nanoparticles, in our opinion, is a result of diverse experimental conditions used. It is noted that while being clearly incomplete and contradictory, the obtained data suggest that a coordinated research program is needed that would detect correlations between particle parameters, experimental design, and the observed biological effects.

Keywords: gold nanoparticles, silver nanoparticles, toxicity, biological effects, plants.


Full article (Rus)

Full text (Eng)



  1. Shchyogolev S.Y. On nanotechnologies in biological research and on the role of biological knowledge in their development. In: Gold nanoparticles: properties, characterization and fabrication. P.E. Chow (ed.). Nova Sci. Publ., NY, 2010: 277-285.
  2. Schwab F., Zhai G., Kern M., Turner A., Schnoor J.L., Wiesner M.R. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants — Critical review. Nanotoxicology, 2016, 10: 257-278 CrossRef
  3. Sengupta J., Ghosh S., Datta P., Gomes A. Physiologically important metal nanoparticles and their toxicity. J. Nanosci. Nanotechnol., 2014, 14: 990-1006 CrossRef
  4. Dreaden E.C., Alkilany A.M., Huang X., Murphy C.J., El-Sayed M.A. The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev., 2012, 41: 2740-2779 CrossRef
  5. Dykman L.A., Khlebtsov N.G. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev., 2012, 41: 2256-2282 CrossRef
  6. Hendren C.O., Mesnard X., Dröge J., Wiesner M.R. Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ. Sci. Technol., 2011, 45: 2562-2569 CrossRef
  7. Piccinno F., Gottschalk F., Seeger S., Nowack B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanopart. Res., 2012, 14: 1109 CrossRef
  8. Geisler-Lee J., Brooks M., Gerfen J.R., Wang Q., Fotis C., Sparer A., Ma X., Berg R.H., Geisler M. Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials, 2014, 4: 301-318 CrossRef
  9. Colman B.P., Arnaout C.L., Anciaux S., Gunsch C.K., Hochella M.F., Jr., Kim B., Lowry G.V., McGill B.M., Reinsch B.C., Richardson C.J., Unrine J.M., Wright J.P., Yin L., Bernhardt M.S. Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS ONE, 2013, 8: e57189 CrossRef
  10. Alkilany A., Murphy C. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res., 2010, 12: 2313-2333 CrossRef
  11. Khlebtsov N.G., Dykman L.A. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev., 2011, 40: 1647-1671 CrossRef
  12. Lewinski N., Colvin V., Drezek R. Cytotoxicity of nanoparticles. Small, 2008, 4: 26-49 CrossRef
  13. Ivask A., Kurvet I., Kasemets K., Blinova I., Aruoja V., Suppi S., Vija H., Käkinen A., Titma T., Heinlaan M., Visnapuu M., Koller D., Kisand V., Kahru A. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS ONE, 2014, 9: e102108 CrossRef
  14. Azhdarzadeh M., Saei A.A., Sharifi S., Hajipour M.J., Alkilany A.M., Shar-ifzadeh M., Ramazani F., Laurent S., Mashaghi A., Mahmoudi M. Nanotoxicology: advances and pitfalls in research methodology. Nanomedicine (Lond.), 2015, 10: 2931-2952 CrossRef
  15. Carneiro M.F.H., Barbosa F., Jr. Gold nanoparticles: A critical review of therapeutic applications and toxicological aspects. J. Tox. Environ. Health B, 2016, 19: 129-148 CrossRef
  16. Manchikanti P., Bandopadhyay T.K. Nanomaterials and effects on biological systems: development of effective regulatory norms. Nanoethics, 2010, 4: 77-83 CrossRef
  17. Carrière M., Larue C. Toxicology: plants and nanoparticles. In: Encyclopedia of nanotechnology. B. Bhushan (ed.). Springer, NY, 2012: 2763-2767.
  18. Masarovicová E., Králová K. Metal nanoparticles and plants. Ecol. Chem. Eng. S, 2013, 20: 9-22 CrossRef
  19. Remédios C., Rosário F., Bastos V. Environmental nanoparticles interactions with plants: morphological, physiological, and genotoxic aspects. J. Botany, 2012, 2012: Article ID 751686 CrossRef
  20. Nanotechnology and plant sciences. Nanoparticles and their impact on plants. M.H. Siddiqui, M.H. Al-Whaibi, F. Mohammad (eds.). Springer, NY, 2015 CrossRef
  21. Hough R.M., Noble R.R.P., Hitchen G.J., Hart R., Reddy S.M., Saunders M., Clode P., Vaughan D., Lowe J., Gray D.J., Anand R.R., Butt C.R.M., Verrall M. Naturally occurring gold nanoparticles and nanoplates. Geology, 2008, 36: 571-574 CrossRef
  22. Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem., 2011, 13: 2638-2650 CrossRef
  23. Shukla D., Krishnamurthy S., Sahi S.V. Microarray analysis of Arabidopsis under gold exposure to identify putative genes involved in the synthesis of gold nanoparticles (AuNPs). Genom. Data, 2015, 3: 100-102 CrossRef
  24. Eggenberger K., Frey N., Zienicke B., Siebenbrock J., Schunck T., Fischer R., Bräse S., Birtalan E., Nann T., Nick P. Use of nanoparticles to study and manipulate plant cells. Adv. Eng. Mat., 2010, 12: B406-B412.
  25. Bhatt I., Tripathi B.N. Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere, 2011, 82: 308-317 CrossRef
  26. Thul S.T., Sarangi B.K., Pandey R.A. Nanotechnology in agroecosystem: implications on plant productivity and its soil environment. Expert Opin. Environ. Biol., 2013, 2: 1 CrossRef
  27. Thwala M., Klaine S.J., Musee N. Interactions of metal-based engineered nanoparticles with aquatic higher plants: A review of the state of current knowledge. Environ. Toxicol. Chem., 2016, 35: 1677-1694 CrossRef
  28. Quigg A., Chin W.-C., Chen C.-S., Zhang S., Jiang Y., Miao A.-J., Schwehr K.A., Xu C., Santschi P.H. Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter. ACS Sustainable Chem. Eng., 2013, 1: 686-702 CrossRef
  29. Moreno-Garrido I., Pérez S., Blasco J. Toxicity of silver and gold nanoparticles on marine microalgae. Mar. Environ. Res., 2015, 111: 60-73 CrossRef
  30. Bogatyrev V.A., Golubev A.A., Selivanov N.Yu., Prilepskii A.Yu., Buki-
    na O.G., Pylaev T.E., Bibikova O.A., Dykman L.A., Khlebtsov N.G. Rossiiskie nanotekhnologii, 2015, 10: 92-99 (in Russ.).
  31. Golubev A.A., Prilepskii A.Y., Dykman L.A., Khlebtsov N.G., Bogatyrev V.A. Colorimetric evaluation of the viability of the microalga Dunaliella salina as a test tool for nanomaterial toxicity. Tox. Sci., 2016, 151: 115-125 CrossRef
  32. Navarro E., Baun A., Behra R., Hartmann N.B., Filser J., Miao A.-J., Quigg A., Santschi P.H., Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 2008, 17: 372-386 CrossRef
  33. Li H., Ye X., Guo X., Geng Z., Wang G. Effects of surface ligands on the uptake and transport of gold nanoparticles in rice and tomato. J. Hazard. Mater., 2016, 314: 188-196 CrossRef
  34. Moscatelli A., Ciampolini F., Rodighiero S., Onelli E., Cresti M., Santo N., Idilli A. Distinct endocytic pathways identified in tobacco pollen tubes using charged nanogold. J. Cell Sci., 2007, 120: 3804-3819 CrossRef
  35. Onelli E., Prescianotto-Baschong C., Caccianiga M., Moscatelli A. Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold. J. Exp. Bot., 2008, 59: 3051-3068 CrossRef
  36. Su Y.H., Tu S.-L., Tseng S.-W., Chang Y.-C., Chang S.-H., Zhang W.-M. Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins. Nanoscale, 2010, 2: 2639-2646 CrossRef
  37. González-Melendi P., Fernández-Pacheco R., Coronado M.J., Corredor E., Testillano P.S., Risueño M.C., Marquina C., Ibarra M.R., Rubiales D., Pérez-de-Luque A. Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann. Bot., 2008, 101: 187-195 CrossRef
  38. Torney F., Trewyn B.G., Lin V.S.-Y., Wang K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol., 2007, 2: 295-300 CrossRef
  39. Wang W.-N., Tarafdar J.C., Biswas P. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J. Nanopart. Res., 2013, 15: 1417 CrossRef
  40. Khodakovskaya M., Dervishi E., Mahmood M., Xu Y., Li Z., Watanabe F., Biris A.S. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 2009, 3: 3221-3227 CrossRef
  41. Koelmel J., Leland T., Wang H., Amarasiriwardena D., Xing B. Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environ. Pollut., 2013, 174: 222-228 CrossRef
  42. Judy J.D., Unrine J.M., Rao W., Wirick S., Bertsch A.M. Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ. Sci. Technol., 2012, 46: 8467-8474 CrossRef
  43. Feichtmeier N.S., Walther P., Leopold K. Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles. Environ. Sci. Pollut. Res. Int., 2015, 22: 8549-8558 CrossRef
  44. Hwang B.G., Ahn S., Lee S.J. Use of gold nanoparticles to detect water uptake in vascular plants. PLoS ONE, 2014, 9: e114902 CrossRef
  45. Zhu Z.-J., Wang H., Yan B., Zheng H., Jiang Y., Miranda O.R., Rotello V.M., Xing B., Vachet R.W. Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ. Sci. Technol., 2012, 46: 12391-12398 CrossRef
  46. Zhai G., Walters K.S., Peate D.W., Alvarez P.J., Schnoor J.L. Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ. Sci. Technol. Lett., 2014, 1: 146-151 CrossRef
  47. Boenigk J., Beisser D., Zimmermann S., Bock C., Jakobi J., Grabner D., Großmann L., Rahmann S., Barcikowski S., Sures B. Effects of silver nitrate and silver nanoparticles on a planktonic community: general trends after short-term exposure. PLoS ONE, 2014, 9: e95340 CrossRef
  48. Judy J.D., Unrine J.M., Bertsch A.M. Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ. Sci. Technol., 2011, 45: 776-781 CrossRef
  49. Ferry J.L., Craig P., Hexel C., Sisco P., Frey R., Pennington P.L., Fulton M.H., Scott G., Decho A.W., Kashiwada S., Murphy C.J., Shaw T.J. Transfer of gold nanoparticles from the water column to the estuarine food web. Nat. Nanotechnol., 2009, 4: 441-444 CrossRef
  50. Ma X., Geiser-Lee J., Deng Y., Kolmakov A. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci. Total Environ., 2010, 408: 3053-3061 CrossRef
  51. Dietz K.J., Herth S. Plant nanotoxicology. Trends Plant Sci., 2011, 16: 582-589 CrossRef
  52. Rico C.M., Majumdar S., Duarte-Gardea M., Peralta-Videa J.R., Gardea-Torresdey J.L. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem., 2011, 59: 3485-3498 CrossRef
  53. Wilson-Corral V., Anderson C.W., Rodriguez-Lopez M. Gold phytomining. A review of the relevance of this technology to mineral extraction in the 21st century. J. Environ. Manage., 2012, 111: 249-257 CrossRef
  54. Aslani F., Bagheri S., Muhd Julkapli N., Juraimi A.S., Hashemi F.S., Baghdadi A. Effects of engineered nanomaterials on plants growth: An overview. Sci. World J., 2014, 2014: Article ID 641759 CrossRef
  55. Arruda S.C., Silva A.L., Galazzi R.M., Azevedo R.A., Arruda M.A. Nanoparticles applied to plant science: A review. Talanta, 2015, 131: 693-705 CrossRef
  56. Chichiriccò G., Poma A. Penetration and toxicity of nanomaterials in higher plants. Nanomaterials, 2015, 5: 851-873 CrossRef
  57. Arora S., Sharma P., Kumar S., Nayan R., Khanna P.K., Zaidi M.G.H. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul., 2012, 66: 303-310 CrossRef
  58. Gunjan B., Zaidi M.G.H., Sandeep A. Impact of gold nanoparticles on physiological and biochemical characteristics of Brassica juncea. J. Plant Biochem. Physiol., 2014, 2: 133 CrossRef
  59. Sharma P., Bhatt D., Zaidi M.G.H., Saradhi P.P., Khanna P.K., Arora S. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl. Biochem. Biotechnol., 2012, 167: 2225-2233 CrossRef
  60. Sabo-Attwood T., Unrine J.M., Stone J.W., Murphy C.J., Ghoshroy S., Blom D., Bertsch P.M., Newman L.A. Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology, 2012, 6: 353-360 CrossRef
  61. Falco W.F., Botero E.R., Falcão E.A., Santiago E.F., Bagnato V.S., Caires A.R.L. In vivo observation of chlorophyll fluorescence quenching induced by gold nanoparticles. J. Photochem. Photobiol. A, 2011, 225: 65-71 CrossRef
  62. Glenn J.B., White S.A., Klaine S.J. Interactions of gold nanoparticles with freshwater aquatic macrophytes are size and species dependent. Environ. Toxicol. Chem., 2012, 31: 194-201 CrossRef
  63. Ostroumov S.A., Poklonov V.A., Kotelevtsev S.V., Orlov S.N. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya, 2014, 3: 19-23 (in Russ.).
  64. Gusev A.A., Akimova O.A., Krutyakov Yu.A., Klimov A.I., Denisov A.N., Kuznetsov D.V., Godymchuk A.Yu., Ikhalainen E.S. Naukovedenie, 2013, 5: 11TVN513. Available Accessed January 30, 2017 (in Russ.).
  65. Savithramma N., Ankanna S., Bhumi G. Effect of nanoparticles on seed germination and seedling growth of Boswelliaovalifoliolata — an endemic and endangered medicinal tree taxon. NanoVision, 2012, 2: 61-68.
  66. An J., Zhang M., Wang S., Tang J. Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWTFoodSci. Technol., 2008, 41: 1100-1107 CrossRef
  67. Abd-Alla M.H., Nafady N.A., Khalaf D.M. Assessment of silver nanoparticles contamination on faba bean-Rhizobiumleguminosarum bv. viciae-Glomusaggregatum symbiosis: Implications for induction of autophagy process in root nodule. Agric. Ecosyst. Environ., 2016, 218: 163-177 CrossRef
  68. Song U., Jun H., Waldman B., Roh J., Kim Y., Yi J., Lee E.J. Functional analyses of nanoparticle toxicity: A comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersiconesculentum). Ecotoxicol. Environ. Saf., 2013, 93: 60-67 CrossRef
  69. Zuverza-Mena N., Armendariz R., Peralta-Videa J.R., Gardea-Torresdey J.L. Effects of silver nanoparticles on radish sprouts: root growth reduction and modifications in the nutritional value. Front. Plant Sci., 2016, 7: 90 CrossRef
  70. Doolette C.L., McLaughlin M.J., Kirby J.K., Navarro D.A. Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactucasativa): Effect of agricultural amendments on plant uptake. J. Hazard. Mater., 2015, 300: 788-795 CrossRef
  71. Barrena R., Casals E., Colun J., Font X., Sánchez A., Puntes V. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere, 2009, 75: 850-857 CrossRef
  72. Galazzi R.M., de Barros Santos E., Caurin T., de Souza Pessôa G., Mazali I.O., Arruda M.A.Z. The importance of evaluating the real metal concentration in nanoparticles post-synthesis for their applications: A case-study using silver nanoparticles. Talanta, 2016, 146: 795-800 CrossRef
  73. Mirzajani F., Askari H., Hamzelou S., Farzaneh M., Ghassempour A. Effect of silver nanoparticles on Oryzasativa L. and its rhizosphere bacteria. Ecotoxicol. Environ. Saf., 2013, 88: 48-54 CrossRef
  74. Gubbins E.J., Batty L.C., Lead J.R. Phytotoxicity of silver nanoparticles to Lemnaminor L. Environ. Pollut., 2011, 59: 1551-1559 CrossRef
  75. Lee W.M., Kwak J.I., An Y.J. Effect of silver nanoparticles in crop plants Phaseolusradiatus and Sorghumbicolor: Media effect on phytotoxicity. Chemosphere, 2012, 86: 491-499 CrossRef
  76. Jiang H.S., Qiu X.N., Li G.B., Li W., Yin L.Y. Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodelapolyrhiza. Environ. Toxicol. Chem., 2014, 33: 1398-1405 CrossRef
  77. Musante C., White J.C. Toxicity of silver and copper to Cucurbitapepo: differential effects of nano and bulk-size particles. Environ. Toxicol., 2012, 27: 510-517 CrossRef
  78. Taylor A. Golduptakeandtolerancein Arabidopsis. PhDThesis. University of York, York (UK), 2011. Available Accessed January 30, 2017.
  79. Kaveh R., Li Y.-S., Ranjbar S., Tehrani R., Brueck C.L., Van Aken B. Changes in Arabidopsisthaliana gene expression in response to silver nanoparticles and silver ions. Environ. Sci. Technol., 2013, 47: 10637-10644 CrossRef
  80. Koo Y., Lukianova-Hleb E.Y., Pan J., Thompson S.M., Lapotko D.O., Braam J. In planta response of Arabidopsis to photothermal impact mediated by gold nanoparticles. Small, 2016, 12: 623-630 CrossRef
  81. Bao D., Oh Z.G., Chen Z. Characterization of silver nanoparticles internalized by Arabidopsis plants using single particle ICP-MS analysis. Front. Plant Sci., 2016, 7: 32 CrossRef
  82. Kumar V., Guleria P., Kumar V., Yadav S.K. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci. Total Environ., 2013, 461-462: 462-468 CrossRef
  83. Taylor A.F., Rylott E.L., Anderson C.W.N., Bruce N.C. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS ONE, 2014, 9: e93793 CrossRef
  84. Shukla D., Krishnamurthy S., Sahi S.V. Genome wide transcriptome analysis reveals ABA mediated response in Arabidopsis during gold (AuCl4-) treatment. Front. Plant Sci., 2014, 5: 652 CrossRef
  85. Notter D.A., Mitrano D.M., Nowack B. Are nanosized or dissolved metals more toxic in the environment? A meta-analysis. Environ. Toxicol. Chem., 2014, 33: 2733-2739 CrossRef
  86. Geisler-Lee J., Wang Q., Yao Y., Zhang W., Geisler M., Li K., Huang Y., Chen Y., Kolmakov A., Ma X. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology, 2013, 7: 323-337 CrossRef
  87. Wang J., Koo Y., Alexander A., Yang Y., Westerhof S., Zhang Q., Schnoor J.L., Colvin V.L., Braam J., Alvarez P.J.J. Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ. Sci. Technol., 2013, 47: 5442-5449 CrossRef
  88. Syu Y.-Y., Hung J.-H., Chen J.-C., Chuang H.-W. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol. Biochem., 2014, 83: 57-64.
  89. Kumar V., Parvatam G., Ravishankar G.A. AgNO3 — a potential regulator of ethylene activity and plant growth modulator. Electron. J. Biotechnol., 2009, 12(2): 1 CrossRef
  90. Binder B.M., Rodriguez F.I., Bleecker A.B., Patterson S.E. The effects of Group 11 transition metals, including gold, on ethylene binding to the ETR1 receptor and growth of Arabidopsis thaliana. FEBS Lett., 2007, 581: 5105-5109 CrossRef
  91. Sosan A., Svistunenko D., Straltsova D., Tsiurkina K., Smolich I., Lawson T., Subramaniam S., Golovko V., Anderson D., Sokolik A., Colbeck I., Demidchik V. Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. Plant J., 2016, 85: 245-257 CrossRef
  92. Wen Y., Zhang L., Chen Z., Sheng X., Qiu J., Xu D. Co-exposure of silver nanoparticles and chiral herbicide imazethapyr to Arabidopsis thaliana: Enantioselective effects. Chemosphere, 2016, 145: 207-214 CrossRef
  93. Dykman L.A., Khlebtsov N.G. Uptake of engineered gold nanoparticles into mammalian cells. Chem. Rev., 2014, 114: 1258-1288 CrossRef
  94. Rains D.W. Plant tissue and protoplast culture: applications to stress physiology and biochemistry. In: Plants under stress. H.G. Jones, T.J. Flowers, M.B. Jones (eds.). Cambridge University Press, Cambridge, 2008: 181-196.
  95. Santos A.R., Miguel A.S., Tomaz L., Malhu R., Maycock C., Vaz Patto M.C., Fevereiro P., Oliva A. The impact of CdSe/ZnS Quantum Dots in cells of Medicago sativa in suspension culture. J. Nanobiotechnol., 2010, 8: 24 CrossRef
  96. Planchet E., Limami A.M. Amino acid synthesis under abiotic stress. In: Amino acids in higher plants. J.P.F. D’Mello (ed.). CAB Int., Wallingford, 2015: 262-276.
  97. Selivanov N.Yu., Selivanova O.G., Sokolov O.I., Sokolova M.K., Bogatyrev V.A., Dykman L.A. Rossiiskie nanotekhnologii, 2017, 12(1-2) (in Russ.).
  98. Zuverza-Mena N., Martínez-Fernández D., Du W., Hernandez-Viezcas J.A., Bonilla-Bird N., López-Moreno M.L., Komárek M., Peralta-Videa J.R., Gardea-Torresdey J.L. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses — A review. Plant Physiol. Biochem., 2017, 110: 236-264 CrossRef