UDC 631.461:57.083

doi: 10.15389/agrobiology.2016.1.46eng

Supported by Russian Science Foundation (grant number 14-26-00094)


Yu.V. Kruglov

All-Russian Research Institute for Agricultural Microbiology, Federal Agency of Scientific Organizations,
3, sh. Podbel’skogo, St. Petersburg, 196608 Russia,
e-mail yuvkruglov@yandex.ru

Received August 6, 2015

Study of the taxonomic and functional diversity of soil microorganisms association is of  great theoretical significance for understanding the structure of the soil microbial community, the nature of the interaction of individual species of microorganisms belonging to this community, as well as their participation in the processes of soil formation and circulation of substances. This article summarises a brief history of ideas about the functioning of soil microbial complex, providing transformation and mineralization of organic matter in soil formation processes. Soil as habitat for microorganisms is heterogeneous that defines microzonal character of the distribution and activity of microorganisms that live in it. The structure of the association of microorganisms and its physiological profiles vary in time and space (D.G. Zvyagintsev, 1987). This defines methodological difficulties and the significant variability of the results of the evaluation of soil microflora by various authors. This review discusses the methodological approaches in determining the physiological diversity of soil microorganisms association. Traditional methods of elective culture media in over a century allowed to reveal numerous physiological groups of microorganisms and developed an idea about their role in the cycle of matter, processes of soil formation and plant nutrition. However, such work is almost not given anything new in principle, both in environmental studies, as well as in agronomy over the past 20 years. At the end of the 1990s a method of analysis of the carbon source utilization profiles (SUP) of natural microorganisms association by BIOLOG system used previously only in medical and general microbiology was proposed  to study the physiological diversity for the test strain (J.L. Garland, A.L. Mills, 1991). This approach was further developed by H. Insam (1997), M.V. Gorlenko and P.A. Kozhevin (2005) and others. A number of modifications of this method (Eso-Plates, ECOLOGY and others) characterized by a set of organic substrates, which, as the authors suggest, is most likely present in natural environments were worked out. Instrumentation of ECOLOG (M.V. Gorlenko, P.A. Kozhevin, 2005) allows to determine not only the range of organic substrates used by microorganisms, but also to quantify the consumption of each substrate. For the processing and interpretation of a significant amount of information obtained in the course of the analysis of soil samples there are an apparatus of multidimensional mathematical statistics, cluster analysis, rank distribution, and ecological indexes of Shannon and Pielou. SUP method (multisubstrat test) possesses a high performance, good resolution (104), a satisfactory reproducibility and is a high-tech and effective tool to assess the physiological diversity. The article deals with the positive and negative aspects of the method. SUP reflects to some extent the potential of aerobic soil microorganisms using low molecular weight organic compounds in the catabolism. However, because of availability of several modifications, as well as some technical problem it is difficult to compare the results obtained by different authors, there is no unified SUP analysis protocol that is required for the comparative environmental studies and the establishment of relevant national and international databases. Thus, analysis of the carbon source utilization profiles (SUP) in BIOLOG system now is under development and testing, and with the accumulation of experimental data and critical analysis, it has good prospects in soil ecology, in research of the relationship between microorganisms and plants, and in assessment of the impact of anthropogenic factors.

Кeywords: association, physiological groups, physiological diversity of bacteria, range of consumed substrates, multisubstrate test, system BIOLOG, ECOLOG, EcoPlates.


Full article (Rus)

Full text (Eng)



  1. Vinogradskii S.N. Mikrobiologiyapochvy. Problemy i metody [Soil microbiology. Problems and methods]. Moscow, 1952.
  2. Lazarev N.M. V sbornike: Trudy VNIISKHM za 1941-1945 gg [In: Transactions of VNIISKhM of 1941-1945]. Moscow, 1949: 5-22.
  3. Mishustin E.N. Assotsiatsii pochvennykh mikroorganizmov [Associations of soil microorganisms]. Moscow, 1975.
  4. Aristovskaya T.V. Mikrobiologiya protsessov pochvoobrazovaniya [Microbiological aspects of soil formation]. Leningrad, 1980.
  5. Zavarzin G.A. Izvestiya AN SSSR, seriya biologicheskaya, 1976, 1: 121-134.
  6. Guzev V.S., Ivanov P.I. V sbornike: Biotekhnologiya mikroorganizmov v sel'skom khozyaistve /Pod redaktsiei A.I. Puponina [In: Biotechnology of microorganisms in agriculture. A.I. Puponin (ed.)]. Moscow, 1988: 78-88.
  7. Voronin A.D. Osnovy fiziki pochv [Fundamentals of soil physics]. Moscow, 1986.
  8. Zvyagintsev D.G. Vzaimodeistvie mikroorganizmov s tverdymi poverkhnostyami [The interaction of microorganisms with solid surfaces]. Moscow, 1973.
  9. Zvyagintsev D.G. Pochva i mikroorganizmy [Soil and microorganisms]. Moscow, 1987.
  10. The spatial distribution of microbes in the environment. R.B. Franklin, A.L. Mills (eds.). Dordrecht, Netherland, 2007: 179-202.
  11. Franklin R.B., Garland J.L., Bolster C.H., Mills A.L. Impact of dilution on microbial community structure and functional potential: comparison of numerical simulations and batch culture experiments. Appl. Environ. Microbiol., 2001, 67: 702-712 CrossRef
  12. Grundmann G.L., Gourbiere F. A micro-sampling approach to improve the inventory of bacterial diversity in soil. Appl. Soil Ecol.,1999, 13: 123-126 CrossRef
  13. Nunan N., Wu K.J., Young I.M., Crawford J.W., Ritz K. Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil. FEMS Microbiol. Ecol.,2003, 44: 203-215 CrossRef
  14. Chenu C., Hassink J., Bloem J. Short-term changes in the spatial distribution of microorganisms in soil aggregates as affected by glucose addition. Biol. Fertil. Soils, 2001, 34: 349-356 CrossRef
  15. Foster R.C. Microenvironments of soil microorganisms. Biol. Fertil. Soils, 1988, 6: 189-203 CrossRef
  16. Hattori T. Soil aggregates as habitats of microorganisms. The reports of Institute for agricultural research, Tohuku University, 1988, 37: 23-36.
  17. Shenu S., Stotzky G. Interactions between microorganisms and soil particles: an overview. In: interaction between soil particles and microorganisms: impact on the terrestrial ecosystem. P.V. Yuan, J.N. Bola, N. Sensei (eds.). Chester, England, 2002: 4-29.
  18. Sessitsch A., Weilharter A., Gerzabek M., Kirchmann H., Kandeler E. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl. Environ. Microbiol., 2001, 67(9): 4215-4224 CrossRef
  19. Zavarzin G.A. S.N. Mikrobiologiya, 2006, 75(5): 582-592.
  20. Kozhevin P.A. V knige: Ekologiya mikroorganizmov /Pod redaktsiei A.I. Netrusova [In: Ecology of microorganisms. A.I. Netrusov (ed.)]. Moscow, 2004.
  21. Waksman S.A. Soil microbiology. NY—London, 1961.
  22. Wintzingerode F., Gobel U.B., Stackebrandt E. Determination of microbial diversity environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev., 1997, 21(3): 213-229 CrossRef
  23. Bab'eva I.P., Zenova G.M. Biologiya pochv [Soil biology]. Moscow, 1989.
  24. Umarov M.M. Assotsiativnaya azotfiksatsiya [Associative nitrogen fixation]. Moscow, 1986.
  25. Kruglov Yu.V. Trudy VNII sel'skokhozyaistvennoi mikrobiologii (Leningrad), 1958, 15: 121-127.
  26. Metody pochvennoi mikrobiologii i biokhimii /Pod redaktsiei D.G. Zvyagintseva [Methods in soil microbiology and biochemistry. D.G. Zvyagintsev (ed.)]. Moscow, 1991.
  27. Allen J.N. Experiments in soil bacteriology. Minneapolis, USA, 1959.
  28. Segi I. Metody pochvennoi mikrobiologii /Pod red. G.S. Muromtseva [Methods of soil microbiology. G.S. Muromtsev (ed.)]. Moscow, 1963.
  29. Emtsev V.T., Mishustin E.N. Mikrobiologiya [Microbiology]. Moscow 2005.
  30. Izuchenie vliyaniya obrabotki pochvy na mikrobiologicheskie protsessy. Trudy Instituta mikrobiologii /Pod red. E.N. Mishustina [The study of microbiological processes as influenced by tillage: transactions of the Institute of Microbiology. E.N. Mishustin (ed.)]. Moscow, 1960.
  31. Kruglov Yu.V. Mikroflora pochvy i pestitsidy [Soil microflora and pesticides]. Moscow, 1991.
  32. Mishustin E.N. Mikroorganizmy i plodorodie pochvy [Microorganism and soil fertility]. Moscow, 1956.
  33. Poshon Zh., de Barzhak G. Pochvennaya mikrobiologiya [Soil microbiology]. Moscow, 1960.
  34. Garland J.L., Mills A.L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole-carbon-source utilization. Appl. Environ. Microbiol., 1991, 57: 2351-2359.
  35. Garland J.L. Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol. Ecol., 1997, 24: 289-300 CrossRef
  36. Preston-Mafham J., Boddy L., Randerson P.F. Analysis of microbial functional diversity using sole-carbon-source utilization profiles — a critique. FEMS Microbiol. Ecol., 2002, 42: 1-14 CrossRef
  37. Yang Q., Wang X., Shen Y. Comparison of soil microbial community catabolic diversity between rhizosphere and bulk soil induced by tillage or residue retention. J. Soil Sci. Plant Nutr., 2013, 13(1): 187-199 CrossRef
  38. Ellis R.J., Best J.G., Fry J.C., Morgan P., Neish B., Trett M.W., Weightman A.J. Similarity of microbial and meiofaunal community analyses for mapping ecological effects of heavy-metal contamination in soil. FEMS Microbiology Ecology, 2002, 40: 113-122 CrossRef 
  39. Mondini C., Insam H. Community level physiological profiling as a tool to evaluate compost maturity: a kinetic approach. European Journal of Soil Biology, 2003, 39: 141-148 CrossRef
  40. Gryta A., Frac M., Oszust K. The application of the Biolog EcoPlate approach in ecotoxicological evaluation of dairy sewage sludge. Appl. Biochem. Biotechnol., 2014, 174(4): 1434-1443 CrossRef
  41. Siciliano S.D., Thereot C.M., de Freitas J.R., Hucl P.J., Germida J.J. Differences in the microbial communities associated with the rots of different cultivars of canola and wheat. Canadian J. Microbiology, 1998, 44: 844-851 CrossRef
  42. Grayston S.J., Wang S.Q., Campbell C.D., Edvards A.C. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem., 1998, 30: 369-378 CrossRef
  43. Campbell C.D., Grayston S.J., Hirst D.J. Use of rizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities. J. Microbiol. Methods, 1997, 30(1): 33-41 CrossRef
  44. Insam H. A new set of substrates proposed for community characterization in environmental samples. In: Microbial communities. Functional versus structural approaches. H. Insam, A. Rangger (eds.). Berlin, 1997: 259-260.
  45. Microbial Community Analysis with EcoPlates™ (http://www.biolog.com/products-static/micro-bial_community_overview.php), accessed Feb 1, 2016.
  46. Gorlenko M.V., Kozhevin P.A. Mul'tisubstratnoe testirovanie prirodnykh mikrobnykh soobshchestv [Multisubstrate testing natural microbial communities]. Moscow, 2005.
  47. Gorlenko M.V., Terekhov A.S., Marchenko S.A., Marchenko A.I., Vorob'ev A.V., Kozhevin P.A. Vestnik Moskovskogo universiteta, seriya 17. Pochvovedenie,  2003, 1: 46-49. 
  48. Semenova I.N., Il'bulova G.R., Suyundukov Ya.T. Povolzhskii ekologicheskii zhurnal, 2012, 3: 311-318.
  49. YAkushev A.V., Byzov B.A. Pochvovedenie, 2008, 11: 1381-1387.
  50. Gorlenko M.V., Yakimenko O.S., Golichenkov M.V., Kostina N.V. Vestnik Moskovskogo universiteta, seriya 17. Pochvovedenie, 2012, 2: 20-27.
  51. Blagodatskaya E., Kuzyakov Y. Active microorganisms in soil: Critical review of estimation criteria and approaches. SoilBiol. Biochem., 2013, 67: 192-211 CrossRef
  52. Smolla K., Wachtendorf U., Heuer H., Li W.T., Forney L. Analysis of BIOLOG GN substrate utilization patterns by microbial communities. Appl. Environ. Microbiol., 1998, 64: 1220-1225.
  53. Vinogradova Yu.A., Lapteva E.M., Perminova E.M., Anisimov S.S., Novakovskii A.B. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2014, 16(5): 74-80.
  54. Chaudhry V., Rehman A., Mishra A., Chauhan P.S., Nautiyal Ch.Sh. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microbial Ecology, 2012, 64: 450-460 CrossRef
  55. Shishido M., Chanway C.P. Storage effects on indigenous soil microbial communities and PGPR efficiency. Soil Biol. Biochem., 1998, 30: 939-947.