doi: 10.15389/agrobiology.2016.1.17eng

UDC 633.1:[573.6.086.83:577.21]:58



L.A. El’konin, I.V. Domanina, Yu.V. Ital’yanskaya

Agricultural Research Institute for South-East Region, Federal Agency of Scientific Organizations,
7, ul. Tulaikova, Saratov, 410010 Russia,

Received August 25, 2015


In recent years, genetic engineering has become an effective tool for the genetic improvement of cultivated plants including changes in the composition grain storage proteins of cereal crops that are the main source of nutrition for humans. The review describes the approaches used in these studies: the introduction of genetic constructs (i) providing the synthesis of proteins that are absent in recipient cultivars; (ii) inducing RNA-silencing of genes encoding proteins with low nutritional value, (iii) regulating the pool of amino acids in the endosperm. The studies are referred, which reported on the introduction of additional genes of high molecular weight glutenins (1Dx5, 1Ax1, 1Bx17, 1By18, 1Dy10 and others) into the genomes of different lines and cultivars of wheat. In these studies, the transgenic lines with increased dough strength and elasticity were obtained. In addition to the practical importance, these studies allow understanding the role of individual genes of high and low molecular weight glutenins in the formation of wheat flour quality traits. The examples of marker-free transgenic wheat lines expressing 1Dy10 and 1Bx14 genes, as well as transfer of high molecular weight glutenin genes into the genomes of other cereals (rye, corn, sorghum) are given. The possibilities of using the RNAi technology to obtain new information about the mechanisms of development of protein bodies, vitreous endosperm formation, and the role of different classes of prolamins and glutenins in the technological properties of flour and dough are discussed. The examples of the creation of transgenic maize with improved nutritional value via RNA-silencing of prolamin genes, transgenic sorghum with improved protein digestibility (obtained by silencing gene of the γ-kafirin, the protein that forms outer layer of the protein bodies, resistant to pepsin digestion), transgenic wheat with suppression of gliadin synthesis, which flour has a low toxicity to humans with celiac disease, forced to comply gluten-free diet, are given. An example of natural RNA-silencing is given Partivularly, in the rice mutant with reduced level of glutelin, a deletion between the two coding sequences, one of which has an inverted orientation has been detected in the Lgc1 locus. The genetic engineering approaches to increase the lysine content are described, e.g. introduction of genes that enhance its synthesis, such as dihydrodipicolinate synthase (DHPS) insensitive to feedback inhibition and aspartate kinase; suppression of zlkr/sdh gene regulating its catabolism; introduction of genes that control the synthesis of proteins with high lysine content (histones and other lysine-rich proteins). The prospects of using genetic engineering methods to create varieties with improved nutritional value are associated with the use of marker-free technologies, increasing accuracy of insertion of genetic constructs, using the methods of genome editing by artificially engineered nucleases.

Keywords: transgenic plants, RNAi, prolamins, protein bodies, endosperm, cereal crops.


Full article (Rus)

Full text (Eng)



  1. Hiei Y., Ishida Y., Komari T. Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Front. Plant Sci., 2014, 5: 628 CrossRef
  2. Sparks C.A., Doherty A., Jones H.D. Genetic transformation of wheat via Agrobacterium-mediated DNA delivery. Methods Mol. Biol., 2014, 1099: 235-250 CrossRef
  3. Godwin I.D., Williams S.B., Pandit P.S., Laidlaw H.K.C. Multifunctional grains for the future: genetic engineering for enhanced and novel cereal quality. In Vitro Cell & Dev. Biol.—Plant, 2009, 45(3): 383-399 CrossRef
  4. Shewry P.R., Halford N.G. Cereal seed storage proteins: structures, properties and role in grain utilization. J. Exp. Botany, 2002, 53(370): 947-958 CrossRef
  5. Gibbon B.C., Larkins B.A. Molecular genetic approaches to developing quality protein maize. Trends in Genetics, 2005, 21(4): 227-233 CrossRef
  6. Holding D.R. Recent advances in the study of prolamin storage protein organization and function. Plant Sci., 2014, 5: 276 CrossRef
  7. Metakovsky E.V., Novoselskaya A.Y., Sozinov A.A. Genetic analysis of gliadin components in winter wheat using two-dimensional polyacrylamide gel electrophoresis. Theor. Appl. Genet., 1984, 69: 31-37.
  8. Gil-Humanes J., Piston F., Shewry P.R., Tosi P., Barro F. Suppression of gliadins results in altered protein body morphology in wheat. J. Exp. Bot., 2011, 62(12): 4203-4213 CrossRef
  9. Prasanna B.M., Vasal S.K., Kassahun B., Singh N.N. Quality protein maize. Curr. Sci., 2001, 81: 1308-1319.
  10. Shull J.M., Watterson J.J., Kirleis A.W. Proposed nomenclature for the alcohol soluble proteins (kafirins) of Sorghum bicolor (L. Moench) based on molecular weight, solubility, and structure. J. Agric. Food Chem., 1991, 39(1): 83-87.
  11. Belton P.S., Delgadillo I., Halford N.G., Shewry P.R. Kafirin structure and functionality. J. Cereal Sci., 2006, 44: 272-286 CrossRef
  12. De Mesa-Stonestreet N.J., Alavi S., Bean S.R. Sorghum proteins: the concentration, isolation, modification, and food applications of kafirins. J. Food Sci., 2010, 75: 90-104 CrossRef
  13. Wong J.H., Marx D.B., Wilson J.D., Buchanan B.B., Lemaux P.G., Pedersen J.F. Principal component analysis and biochemical characterization of protein and starch reveal primary targets for improving sorghum grain. Plant Sci., 2010, 179: 598-611 CrossRef
  14. Grootboom A.W., Mkhonza N.L., Mbambo Z., O’Kennedy M.M., da Silva L.S., Taylor J., Taylor J.R.N., Chikwamba R., Mehlo L. Co-suppression of synthesis of major α-kafirin sub-class together with γ-kafirin-1 and γ-kafirin-2 required for substantially improved protein digestibility in transgenic sorghum. Plant Cell Rep., 2014, 33: 521-537 CrossRef
  15. Oria M.P., Hamaker B.R., Shull J.M. Resistance of sorghum α-, β- and γ-kafirins to pepsin digestion. J. Agric. Food Chem., 1995, 43: 2148-2153.
  16. Duodu K.G., Taylor J.R.N., Belton P.S., Hamaker B.R. Factors affecting sorghum protein digestibility. J. Cereal Sci., 2003, 38: 117-131 CrossRef
  17. Saito Y., Shigemitsu T., Yamasaki R., Sasou A., Goto F., Kishida K., Kuroda M., Tanaka K., Morita S., Satoh S., Masumura T. Formation mechanism of the internal structure of type I protein bodies in rice endosperm: relationship between the localization of prolamin species and the expression of individual genes. The Plant J., 2012, 70: 1043-1055 CrossRef
  18. Takemoto Y., Coughlan S.J., Okita T.W., Satoh H., Ogawa M., Kuma-maru T. The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase. Plant Physiol., 2002, 128: 1212-1222 CrossRef
  19. Takaiwa F., Hirose S., Takagi H., Yang L., Wakasa Y. Deposition of a recombinant peptide in ER-derived protein bodies by retention with cysteine-rich prolamins in transgenic rice seed. Planta, 2009, 229: 1147-1158 CrossRef
  20. Barro F., Rooke L., Bekes F., Gras P., Tatham A.S., Fido R., Lazzeri P.A., Shewry P.R., Barcelo P. Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nat. Biotechnol., 1997, 15: 1295-1299 CrossRef
  21. Rakszegi M., Bekes F., Lang L., Tamas L., Shewry P.R., Bedo Z. Technological quality of transgenic wheat expressing an increased amount of a HMW glutenin subunit. J. Cereal Sci., 2005, 42: 15-23 CrossRef
  22. Rakszegi M., Pastori G., Jones H.D., Bekes F., Butow B. Technological quality of field grown transgenic lines of commercial wheat cultivars expressing the 1A61 HMW glutenin subunit gene. J. Cereal Sci., 2008, 47: 310-321 CrossRef
  23. Blechl A., Lin J., Nguyen S., Chan R., Anderson O.D., Dupont F.M. Transgenic wheats with elevated levels of Dx5 and/or Dy10 high-molecular-weight glutenin subunits yield doughs with increased mixing strength and tolerance. J. Cereal Sci., 2007, 45: 172-183 CrossRef
  24. Masci S., D’Ovidio R., Scossa F., Patacchini C., Lafiandra D. Production and characterization of a transgenic bread wheat line over-expressing a low molecular-weight glutenin subunit gene. Mol. Breed., 2003, 12(3): 209-222 CrossRef
  25. Leon E., Marin S., Gimenez M.J., Piston F., Rodriguez-Quijano M., Shewry P.R., Barro F. Mixing properties and dough functionality of transgenic lines of a commercial wheat cultivar expressing the 1A61, 1D65 and 1Dy10 HMW glutenin subunit genes. J. Cereal Sci., 2009, 49: 148-156 CrossRef
  26. He G.Y., Rooke L., Steele S., Bekes F., Gras P., Tatham A.S., Fido R., Barcelo P., Shewry P.R., Lazzeri P. Transformation of pasta wheat (Triticum turgidum L. var. durum) with high-molecular-weight glutenin subunit genes and modification of dough functionality. Mol. Breed., 1999, 5(4): 377-386 CrossRef
  27. Gadaleta A., Blechl A.E., Nguyen S., Cardone M.F., Ventura M., Quick J.S., Blanco A. Stably expressed D-genome derived HMW glutenin subunit genes transformed into different durum wheat genotypes change dough mixing properties. Mol. Breed., 2008, 22: 267-279 CrossRef
  28. Tosi P., D’Ovidio R., Napier J.A., Bekes F., Shewry P.R. Expression of epitope-tagged LMW glutenin subunits in the starchy endosperm of transgenic wheat and their incorporation into glutenin polymers. Theor. Appl. Genet., 2004, 108: 468-476 CrossRef
  29. Tosi P., Masci S., Giovangrossi A., D’Ovidio R., Bekes F. Modification of the low molecular weight (LMW) glutenin composition of transgenic durum wheat: Effects on glutenin polymer size and gluten functionality. Mol. Breed., 2005, 16: 113-126 CrossRef
  30. Liu X., Jin W., Liu J., Zhao H., Guo A. Transformation of wheat with the HMW-GS 1Bx14 gene without markers. Russ. J. Genet., 2011, 47(2): 182-188 CrossRef
  31. Altpeter F., Vasil V., Srivastava V., Vasil I.K. Integration and expression of the high-molecular-weight glutenin subunit 1A61 gene into wheat. Nat. Biotechnol., 1996, 14: 1155-1159 CrossRef
  32. Sangtong V., Moran L., Chikwamba R., Wang K., Woodman-Clikeman W., Long J., Lee M., Scott P. Expression and inheritance of the wheat Glu-1DX5 gene in transgenic maize. Theor. Appl. Genet., 2002, 105(6-7): 937-945 CrossRef
  33. Kumar T., Dweikat I., Sato S., Ge Z., Nersesian N., Elthon T., Bean S., Ioerger B.P., Tiley M., Clemente T. Modulation of kernel storage proteins in grain sorghum (Sorghum bicolor (L.) Moench). Plant Biotechnol. J., 2012, 10: 533-544 CrossRef
  34. Ali N., Datta S.K., Datta K. RNA interference in designing transgenic crops. GM Crops, 2010, 1(4): 207-213 CrossRef
  35. Katoch R., Thakur N. Advances in RNA interference technology and its impact on nutritional improvement, disease and insect control in plants. Appl. Biochem. Biotechnol., 2013, 169(5): 1579-1605 CrossRef
  36. Younis A., Siddique M.I., Kim C.-K., Lim K.-B. RNA Interference (RNAi) induced gene silencing: a promising approach of hi-tech plant breeding. Int. J. Biol. Sci., 2014, 10(10): 1150-1158 CrossRef
  37. Gil-Humanes J., Piston F., Hernando A., Alvarez J.B., Shewry P.R., Barro F. Silencing of g-gliadins by RNA interference (RNAi) in bread wheat. J. Cereal Sci., 2008, 48: 565-568 CrossRef
  38. Gil-Humanes J., Piston F., Gimenez M.J., Mart?n A., Barro F. The introgression of RNAi silencing of γ-gliadins into commercial lines of bread wheat changes the mixing and technological properties of the dough. PLoS ONE, 2012, 7(9): e45937 CrossRef
  39. Wieser H., Koehler P., Folck A., Becker D. Characterization of wheat with strongly reduced a-gliadin content. 9th Annual Gluten Workshop, 14-16 September, 2006, San Fransisco, California, USA. G.L. Lookhart, P.K.W. Ng (eds.). AACC, St Paul, MN, 2006: 13-16.
  40. Altenbach S.B., Tanaka C.K., Allen P.V. Quantitative proteomic analysis of wheat grain proteins reveals differential effects of silencing of omega-5 gliadin genes in transgenic lines. J. Cereal Sci., 2014, 59: 118-125 CrossRef
  41. Gil-Humanes J., Pistón F., Tollefsen S., Sollid L.M., Barro F. Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference. PNAS USA, 2010, 107(39): 17023-17028 CrossRef
  42. Segal G., Song R., Messing J. A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics, 2003, 165: 387-397.
  43. Huang S., Frizzi A., Florida C.A., Kruger D.E., Luethy M.H. High lysine and high tryptophan transgenic maize resulting from the reduction of both 19- and 22-kD α-zeins. Plant Mol. Biol., 2006, 61: 525-535 CrossRef
  44. Wu Y., Messing J. RNA interference-mediated change in protein body morphology and seed opacity through loss of different zein proteins. Plant Physiol., 2010, 153: 337-347 CrossRef
  45. Wu Y., Holding D.R., Messing J. g-Zeins are essential for endosperm modification in quality protein maize. PNAS USA, 2010, 107(29): 12810-12815 CrossRef
  46. Guo X., Yuan L., Chen H., Sato S.J., Clemente T.E., Holding D.R. Non-redundant function of zeins and their correct stoichiometric ratio drive protein body formation in maize endosperm. Plant Physiol., 2013, 162: 1359-1369 CrossRef
  47. Da Silva L.S., Jung R., Zhao Z.Y., Glassman K., Grootboom A.W., Mehlo L., O’Kennedy M.M., Taylor J., Taylor J.R.N. Effect of suppressing the synthesis of different kafirin sub-classes on grain endosperm texture, protein body structure and protein nutritional quality in improved sorghum lines. J. Cereal Sci., 2011, 54: 160-167 CrossRef
  48. Da Silva L.S., Taylor J., Taylor J.R.N. Transgenic sorghum with altered kafirin synthesis: kafirin solubility, polymerization and protein digestion. J. Agric. Food Chem., 2011, 59: 9265-9270 CrossRef
  49. El'konin L.A., Domanina I.V., Ital'yanskaya Yu.V., Rakitin A.L., Ravin N.V. Materialy V Vserossiiskogo simpoziuma «Transgennye rasteniya: tekhnologiya sozdaniya, biologicheskie svoistva, primenenie, bezopasnost'» [Proc. V All-Russia Symp. «Transgenic plants: the creation, biological properties, usage, security»]. Moscow, 2014: 239-242.
  50. Oria M.P., Hamaker B.R., Axtell J.D., Huang C.P. A highly digestible sorghum mutant cultivar exhibits a unique folded structure of endosperm protein bodies. PNAS USA, 2000, 97: 5065-5070 CrossRef
  51. Nagamine A., Matsusaka H., Ushijima T., Kawagoe Y., Ogawa M., Okita T.W., Kumamaru T. A role for the cysteine-rich 10 kDa prolamin in protein body I formation in rice. Plant Cell Physiol., 2011, 52(6): 1003-1016 CrossRef
  52. Kim H.-J., Lee J.-Y., Yoon U.-H., Lim S.H., Kim Y.-M. Effects of reduced prolamin on seed storage protein composition and the nutritional quality of rice. Int. J. Mol. Sci., 2013, 14: 17073-17084 CrossRef
  53. Kawakatsu T., Hirose S., Yasuda H., Takaiwa F. Reducing rice seed storage protein accumulation leads to changes in nutrient quality and storage organelle formation. Plant Physiol., 2010, 154: 1842-1854 CrossRef
  54. Kusaba M., Miyahara K., Lida S., Fukuoka H., Takario T., Sassa H., Nishimura M., Nishio T. Low glutenin content 1: a dominant mutation that suppresses the glutenin multigene family via RNA silencing in rice. Plant Cell, 2003, 15: 1455-1467 CrossRef
  55. Ufaz S., Galili G. Improving the content of essential amino acids in crop plants: goals and opportunities. Plant Physiol., 2008, 147(3): 954-961 CrossRef
  56. Falco S.C., Keeler S.J., Rice J.A. Chimeric genes and methods for increasing the lysine and threonine content of the seeds of plants. US Patent 5,773,691. A01H 5/00. E. I. Du Pont de Nemours and Company. Appl. No.: 474,633. Filed: Jun. 7, 1995. Date of Patent: Jun. 30, 1998.
  57. Huang S., Kruger D.E., Frizzi A., D’Ordine R.L., Florida C.A., Adams W.R., Brown W.E., Luethy M.H. High-lysine corn produced by the combination of enhanced lysine biosynthesis and reduced zein accumulation. Plant Biotechnol. J., 2005, 3: 555-569 CrossRef
  58. Houmard N.M., Mainville J.L., Bonin C.P., Huang S., Luethy M.H., Malvar T.M. High-lysine corn generated by endosperm-specific suppression of lysine catabolism using RNAi. Plant Biotechnol. J., 2007, 5: 605-614 CrossRef
  59. Frizzi A., Huang S., Gilbertson L.A., Armstrong T.A., Luethy M.H., Mal-
    var T.M. Modifying lysine biosynthesis and catabolism in corn with a single bifunctional expression/silencing transgene cassette. Plant Biotechnol. J., 2008, 6(1): 13-21 CrossRef
  60. Long X., Liu Q., Chan M., Wang Q., Sun S.S.M. Metabolic engineering and profiling of rice with increased lysine. Plant Biotechnol. J., 2012, 11(4): 490-501 CrossRef
  61. Huang S., Frizzi A., Florida C.A., Kruger D.E., Luethy M.H. High lysine and high tryptophan transgenic maize resulting from the reduction of both 19- and 22-kD α-zeins. Plant Mol. Biol., 2006, 61: 525-535 CrossRef
  62. Wong H.W.,·Liu Q.,·Sun S.S.M. Biofortification of rice with lysine using endogenous histones. Plant Mol. Biol., 2015, 87: 235-248 CrossRef
  63. Yu P., Zhang Z., Zhu S., Liu A.. Seed-specific expression of the lysine-rich protein gene sb401 significantly increases both lysine and total protein content in maize seeds. Mol. Breed., 2004, 14(1): 1-7 CrossRef
  64. Yue J., Li C., Zhao Q., Zhu D., Yu J. Seed-specific expression of a lysine-rich protein gene, GhLRP, from cotton significantly increases the lysine content in maize seeds. Int. J. Mol. Sci., 2014, 15(4): 350-365 CrossRef
  65. Rukavtsova E.B., Lebedeva A.A., Zakharchenko N.S., Bur'yanov Ya.I. Fiziologiya rastenii, 2012, 60(1): 17-30.
  66. Tuteja N., Verma S., Sahoo R.K., Raveendary S., Reddy IN B.L. Recent advances in development of marker-free transgenic plants: Regulation and biosafety concern. J. Biosci., 2012, 37: 167-197 CrossRef
  67. De Paepe A., De Buck S., Nolf J., Van Lerberge E., Depicker A. Site-specific T-DNA integration in Arabidopsis thaliana mediated by the combined action of CRE recombinase and fC31 integrase. Plant J., 2013, 75: 172-184 CrossRef
  68. Bortesia L., Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Adv., 2015, 33: 41-52 CrossRef