doi: 10.15389/agrobiology.2016.1.3eng

UDC 631.523/.524:581.14:575.1

Acknowledgements:
We are grateful to Dr O.V. Tankelyun, a senior researcher of the Plant Physiology and Biochemistry Department, St. Petersburg State University, for reading the manuscript and helpful comments.
Supported by Saint Petersburg State University (project number 1-38-233-14) and Russian Foundation for Basic Research (project number 14-04-01-624)

 

MOLECULAR BASIS OF THE DWARFISM CHARACTER IN CULTIVATED PLANTS. I. GROWTH DISTORTIONS DUE TO MUTATIONS OF GIBBERELLIN METABOLISM AND SIGNALING (review)

T.E. Bilova1, D.N. Ryabova2, I.N. Anisimova2

1Saint Petersburg State University,
7-9, Universitetskaya nab., St. Petersburg, 199034 Russia,
e-mail bilova.tati-ana@gmail.com;
2Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Federal Agency of Scientific Organizations,
42-44, ul. Bol’shaya Morskaya, St. Petersburg, 190000 Russia,
e-mail rdash@mail.ru, irina_anisimova@inbox.ru

Received January 13, 2015

 

Development of dwarf cereal varieties with improved mechanical stability of stems preventing their lodging led to significantly increased crop productivity in the 1960-1970s. The creation of novel high-yielding cultivars was one of the main purposes of the «Green revolution» aimed at the reorganization of agriculture in developing countries (G.S. Khush, 2001). At the current time the dwarfism character is of widely use in plant breeding. The dwarf varieties are not only resistant to lodging but also have higher nutrients-absorbing potential and often are more tolerant to diseases than traditional cultivars (K.U. Kurkiev et al., 2006). In connection with that the factors that predetermine plant growth have become of increasing scientific interest over recent years. Numerous dwarf cultivars produced during the «Green revolution» possessed mutant genes responsible for metabolism and transmission of gibberellic (GA) signal (M. Ueguchi-Tanaka et al., 2001; T. Sakamoto et al., 2004). GAs are involved in control of many stages of plant development, including seed germination, stem and root elongation (E. Tanimoto, 2012; P. Hedden, V. Sponsel, 2015). However, alternations at different steps of the GA-dependent processes might lead to different results: to plants with reduced height as well as to tall slender plants. Clear understanding the interaction of genetic and molecular mechanisms will facilitate the revealing of key molecular targets the changes in which would result in production of the desired dwarf varieties. The paper considers the ways of gibberellins biosynthesis, deactivation and how pool of active GAs is maintained. Among numerous known GAs, produced by plants, only GA1, GA3, GA4, GA5 and GA7 are physiologically active. GA20-oxidases and C3,β-oxidases (or C3,β-hydroxylases) involved in production of the active gibberellins catalyze final reactions of gibberellin biosynthesis. C2,β-oxidases are main enzymes that can quickly inactivate active GAs by adding a hydroxyl group (—OH) to a GA molecule. Modern concept about GA-signaling is reviewed according to the following established steps: GA receptor GID1; DELLA-proteins as the negative regulators in GA signaling; SCF E3-ubiqutin protein ligase and 26S proteasome; transcriptional factors with DNA-binding site; GA-regulated genes. Accumulated up-to-date data consider that in transmission of gibberellic signal a GA molecule initiates DELLA-protein degradation via interaction of GID1-DELLA complex with E3 SCFSLY1/GID2 (T.-P. Sun, 2011). Thus, reduced growth in dwarf cultivars can be associated with defects in biosynthesis of the active GAs or with accumulation of repressors of GA signaling, the DELLA-proteins, while GA-constitutive growth in tall slender forms might be caused by disturbance in work of GA-deactivation system or lack of the DELLA repressive function (H. Claeys et al., 2014). The paper also considers ways of participation of gibberellin in the complex hormone regulation of plant growth which occurs often via control over the repressive function of DELLA-proteins (P. Achard et al., 2003). A special attention is paid to characteristics of the genes that lead to altering plant growth, the dwarfism or gigantism.

Keywords: dwarfism, restrained growth, gibberellin signal transduction, receptor GID1, DELLA protein, proteolysis.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Kobylyanskii V.D. Rozh': Geneticheskie osnovy selektsii [Rye: The genetic basis of breeding]. Moscow, 1982.
  2. Luk'yanenko P.P., Zhogin A.F. Selektsiya i semenovodstvo, 1974, 1: 13-16.
  3. Al'derov A.A. Genetika korotkostebel'nosti tetraploidnykh pshenits [Genetics of shortness in tatraploid wheat]. St. Petersburg, 2001.
  4. Bespalova L.A. V sbornike: Nauchnye trudy KNIISKH [In: Transactions of Krasnodar Research Institute of Agriculture]. Krasnodar, 1982: 103-120.
  5. Yakushevskii V.S. V sbornike: Sorgo v Yuzhnykh i Yugo-Vostochnykh raionakh SSSR [Sorghum in Southern and South-Eastern regions of the USSR]. Moscow, 1967: 19-36.
  6. Kurkiev K.U., Kurkiev U.K., Al'derov A.A. Genetika, 2006, 42(3): 369-376 CrossRef
  7. Zhdanov L.A. Doklady VASKHNIL, 1964, 6: 7-12.
  8. Burmistrov L.A. V sbornike: Problemy otsenki iskhodnogo materiala i podbora roditel'skikh par v selektsii plodovykh rastenii [The evaluation of original material and selection of parents in breeding fruit plants]. Michurinsk, 1996: 88-91.
  9. Vavilov N.I. Zakon gomologicheskikh ryadov v nasledstvennoi izmenchivosti [The law of homologous series in hereditary variability]. Moscow-Leningrad, 1935.
  10. Borlaug N.E. The impact of agricultural research on Mexican wheat production. Transactions of the New York Academy of Science, 1958, 20(3): 278-295 CrossRef
  11. Khush G.S. Green revolution: the way forward. Nat. Rev. Genet., 2001, 2(10): 815-822 CrossRef
  12. Kurosawa E. Experimental studies on the nature of the substance secreted by the «bakanae» fungus. Trans. Nat. Hist. Soc. Formosa, 1926, 16: 213-227.
  13. Sakamoto T., Miura K., Itoh H., Tatsumi T., Ueguchi-Tanaka M., Ishiyama K., Kobayashi M., Agrawal G.K., Takeda S., Abe K., Miyao A., Hirochika H., Kitano H., Ashikari M., Matsuoka M. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol., 2004, 134(4): 1642-1653 CrossRef
  14. Ji S.H., Gururani M.A., Lee J.W., Ahn B.-O., Chun S.-C. Isolation and characterization of a dwarf rice mutant exhibiting defective gibberellins biosynthesis. Plant Biol., 2014, 16(2): 428-439 CrossRef
  15. Phinney B.O., Spray C. Chemical genetics and the gibberellin pathway in Zea mays L. In: Plant Growth Substances 1982. P. Wareing (ed.). Academic Press, London, NY, 1982: 101-110.
  16. Regnault T., Daviere J.-M., Heintz D., Lange T., Achard P. The gibberellin biosynthetic genes AtKAO1 and AtKAO2 have overlapping roles throughout Arabidopsis development. Plant J., 2014, 80: 462-474 CrossRef
  17. Davidson S.E., Elliott R.C., Helliwell C.A., Poole A.T., Reid J.B. The pea gene NA encodes ent-kaurenoic acid oxidase. Plant Physiol., 2003, 131(1): 335-344 CrossRef
  18. Winkler R.G., Helentjaris T. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell, 1995, 7(8): 1307-1317 CrossRef
  19. Helliwell C.A., Chandler P.M., Poole A., Dennis E.S., Peacock W.J. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. PNAS USA, 2001, 98(4): 2065-2070 CrossRef
  20. Ayano M., Kani T., Kojima M., Sakakibara H., Kitaoka T., Kuroha T., Angeles-Shim R.B., Kitano H., Nagai K., Ashikari M. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice. Plant Cell Envir., 2014, 37: 2313-2324 CrossRef
  21. Reid J.B., Ross J.J. Mendel’s genes: toward a full molecular characterization. Genetics, 2011, 189: 3-10 CrossRef
  22. Reinecke D.M., Wickramarathna A.D., Ozga J.A., Kurepin L.V., Jin A.L., Good A.G., Pharis R.P. Gibberellin 3-oxidase gene expression patterns influence gibberellin biosynthesis, growth, and development in pea. Plant Physiol., 2013, 163: 929-945 CrossRef
  23. Martin D.N., Proebsting W.M., Hedden P. The SLENDER gene of pea encodes a gibberellin 2-oxidase. Plant Physiol., 1999, 121(3): 775-781 CrossRef
  24. Ueguchi-Tanaka M., Ashikari M., Nakajima M., Itoh H., Katoh E., Kobayashi M., Chow T.Y., Hsing Y.I., Kitano H., Yamaguchi I., Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellins. Nature, 2005, 437(7059): 693-698 CrossRef
  25. Hartweck L.M., Olszewski N.E. Rice GIBBERELLIN INSENSITIVE DWARF1 is a gibberellin receptor that illuminates and raises questions about GA signaling. Plant Cell,2006, 18(2): 278-282 CrossRef
  26. Ueguchi-Tanaka M., Fujisawa Y., Kobayashi M., Ashikari M., Iwasaki Y., Kitano H., Matsuoka M. Rice dwarf mutant d1, which is defective in the subunit of the heterotrimeric G protein, affects gibberellin signal transduction. PNAS USA, 2000, 97(21): 11638-1643 CrossRef
  27. Izawa Y., Takayanagi Y., Inaba N., Abe Y., Minami M., Fujisawa Y., Kato H., Ohki S., Kitano H., Iwasaki Y. Function and expression pattern of the subunit of the heterotrimeric G protein in rice. Plant Cell Physiol., 2010, 51: 271-281 CrossRef
  28. Ma Q., Hedden P., Zhang Q. Heterosis in rice seedlings: its relationship to gibberellin content and expression of gibberellins metabolism and signaling genes. Plant Physiol., 2011, 156(4): 1905-1920 CrossRef
  29. Hedden P., Thomas S.G. Gibberellin biosynthesis and its regulation. Biochem. J., 2012, 444: 11-25 CrossRef
  30. Medvedev S.S., Sharova E.I. Biologiya razvitiya rastenii. Tom 1. Nachala biologii razvitiya rastenii. Fitogormony [Biology of plant development. V. 1. Elements of plant development biology. Phytohormones]. St. Petersburg, 2011.
  31. Wilson R.N., Heckman J.W., Somerville C.R. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol., 1992, 100(1): 403-408 CrossRef
  32. Tyler L., Thomas S.G., Hu J., Dill A., Alonso J.M., Ecker J.R., Sun T. DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol., 2004, 135(2): 1008-1019 CrossRef
  33. Gao X.-H., Xiao S.-L., Yao Q.-F., Wang Y.-J., Fu X.-D. An updated GA signaling «Relief of repression» regulatory model. Mol. Plant., 2011, 4(4): 601-606 CrossRef
  34. Sasaki A., Ashikari M., Ueguchi-Tanaka M., Itoh H., Nishimura A., Swapan D., Ishiyama K., Saito T., Kobayashi M., Khush G.S. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416(6882): 701-702 CrossRef
  35. Huang Y., Wang X., Ge S., Rao G.-Y. Divergence and adaptive evolution of the gibberellin oxidase genes in plants. BMC Evol. Biol., 2015, 15: 207 CrossRef
  36. Claeys H., De Bodt S., Inze D. Gibberellins and DELLAs: central nodes in growth regulatory networks. Trends in Plant Science, 2014, 19(4): 231-239 CrossRef
  37. Varbanova M., Yamaguchi S., Yang Y., McKelvey K., Hanada A., Borochov R., Yu F., Jikumaru Y., Ross J., Cortes D., Ma C.J., Noel J.P., Mander L., Shulaev V., Kamiya Y., Rodermel S., Weiss D., Pichersky E. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell, 2007, 19(1): 32-45 CrossRef
  38. Zentella R., Zhang Z.L., Park M., Thomas S.G., Endo A., Murase K., Fleet C.M., Jikumaru Y., Nambara E., Kamiya Y., Sun T.P. Global analysis of DELLA direct targets in Arabidopsis. Plant Cell, 2007, 19(10): 3037-3057 CrossRef
  39. Weston D.E., Elliott R.C., Lester D.R., Rameau C., Reid J.B., Murfet I.C., Ross J.J. The pea (Pisum sativum) DELLA proteins LA and CRY are important regulators of gibberellin synthesis and root growth. Plant Physiol., 2008, 147(1): 199-205 CrossRef  
  40. Zhang Z.-L., Ogawab M., Fleeta C.M., Zentella R., Hua J., Heoc J.-O., Limc J., Kamiyab Y., Yamaguchib S., Sun T. SCARECROW-LIKE 3 promotes gibberellins signaling by antagonizing master growth repressor DELLA in Arabidopsis. PNAS USA, 2011, 108(5): 2160-2165 CrossRef
  41. Hooley R., Beale M.H., Smith S.J. Gibberellin perception at the plasma membrane of Avena fatua aleurone protoplasts. Planta, 1991, 183(2): 274-280 CrossRef
  42. Taddese B., Upton G.J.G., Bailey G.R., Jordan S.R.D., Abdulla N.Y., Reeves P.J., Reynolds C.A. Do plants contain G protein-coupled receptors? Plant Physiol., 2014, 164: 287-307 CrossRef
  43. Urano D., Chen J.-G., Botella J.R., Jones A.M. Heterotrimeric G protein signaling in the plant kingdom. Open Biol., 2013, 3: 120186 CrossRef
  44. Hedden P., Sponsel V. Century of gibberellin research. J. Plant Growth Regul., 2015, 34: 740-760 CrossRef
  45. Hirano K., Asano K., Tsuji H., Kawamura M., Mori H., Kitano H., Ueguchi-Tanaka M., Matsuoka M. Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell, 2010, 22(8): 2680-2696 CrossRef
  46. Li H., Wang Y., Li X., Gao Y., Wang Z., Zhao Y., Wang M. A GA-insensitive dwarf mutant of Brassica napus L. correlated with mutation in pyrimidine box in the promoter of GID1. Mol. Biol. Rep., 2011, 38(1): 191-197 CrossRef
  47. Griffiths J., Murase K., Rieu I., Zentella R., Zhang Z.L., Powers S.J., Gong F., Phillips A.L., Hedden P., Sun T.P., Thomas S.G. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell, 2006, 18(12): 3399-3414 CrossRef
  48. Nakajima M., Shimada A., Takashi Y., Kim Y.C., Park S.H., Ueguchi-Tanaka M., Suzuki H., Katoh E., Iuchi S., Kobayashi M., Maeda T., Matsuoka M., Yamaguchi I. Identification and characterization of Arabidopsis gibberellin receptors. Plant J., 2006, 46(5): 880-889 CrossRef
  49. Sun T.-P. The molecular mechanism and evolution of the review GA—GID1—DELLA signaling module in plants. Cur. Biol., 2011, 21(9): R338-R345 CrossRef
  50. Ueguchi-Tanaka M., Nakajima M., Motoyuki A., Matsuoka M. Gibberellin receptor and its role in gibberellin signaling in plants. Annu. Rev. Plant Biol., 2007, 58(1): 183-198 CrossRef
  51. Murase K., Hirano Y., Sun T.-P., Hakoshima T. Gibberellin induced DELLA recognition by the gibberellin receptor GID1. Nature, 2008, 456(7221): 459-463 CrossRef
  52. Hidden P. Plant biology: gibberellins close the lid. Nature, 2008, 456(7221): 455-456 CrossRef
  53. Bolle C. The role of GRAS proteins in plant signal transduction and development. Planta, 2004, 218: 683-692 CrossRef
  54. Dill A., Thomas S.G., Hu J., Steber C.M., Sun T.P. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell, 2004, 16(6): 1392-1405 CrossRef
  55. Sasaki A., Itoh H., Gomi K., Ueguchi-Tanaka M., Ishiyama K., Kobayashi M., Jeong D.H., An G., Kitano H., Ashikari M., Matsuoka M. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science, 2003, 299(5614): 1896-1898 CrossRef
  56. Hauvermale A.L., Ariizumi T., Steber C.M. Gibberellin signaling: A theme and variations on DELLA repression. Plant Physiol., 2012, 160: 83-92 CrossRef
  57. De Lucas M., Daviere J.-M., Rodriguez-Falcon M., Pontin M., Iglesias-Pedraz J.M., Lorrain S., Fankhause C.,Blazquez M.A.,Titarenko E.,Prat S. A molecular framework for light and gibberellin control of cell elongation. Nature, 2008, 451(7177): 480-484 CrossRef
  58. Feng S., Martinez C., Gusmaroli G., Wang Y., Zhou J., Wang F., Chen L.Y., Yu L., Iglesias-Pedraz J.M., Kircher S., Schafer E., Fu X.D., Fan L.M., Deng X.W. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 2008, 451(7177): 475-479 CrossRef
  59. Ariizumi T., Murase K., Sun T.P., Steber C.M. Proteolysis-independent downregulation of DELLA repression in Arabidopsis by the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1. Plant Cell., 2008, 20(9): 2447-2459 CrossRef
  60. McGinnis K.M., Thomas S.G., Soule J.D., Strader L.C., Zale J.M., Sun T., Steber C.M. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell, 2003, 15(5): 1120-1130 CrossRef
  61. Gagne J.M., Downes B.P., Shin-Han S., Durski A.M., Vierstra R.D. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. PNAS USA, 2002, 99(17): 11519-11524 CrossRef
  62. Bjorklund S., Antti H., Uddestrand I., Moritz T., Sundberg B. Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J., 2007, 52(3): 499-511 CrossRef
  63. Hay A., Kaur H., Phillips A., Hedden P., Hake S., Tsiantis M. The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Curr. Biol., 2002, 12(18): 1557-1565 CrossRef
  64. Achard P., Vriezen W.H., Van Der Straeten D., Harberd N.P. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell, 2003, 15(12): 2816-2825 CrossRef
  65. Tanimoto E. Tall or short? Slender or thick? A plant strategy for regulating elongation growth of roots by low concentrations of gibberellin. Ann. Bot., 2012, 110: 373-381 CrossRef
  66. Cecconi F., Gaetani M., Lenzi C., Durante M. The sunflower dwarf mutant dw1: effects of gibberellic acid treatment. Helia, 2002, 25(36): 161-166 CrossRef
  67. Gavrilova V.A., Rozhkova V.T., Anisimova I.N. Sunflower genetic collection at the Vavilov Institute of Plant Industry. Helia, 2014, 37(60): 1-16 CrossRef

back