doi: 10.15389/agrobiology.2015.1.16eng

UDC 632.9:581.2:581.5-28


O.B. Tkachenko1, A.V. Ovsyankina2, A.G. Shchukovskaya1

1N.V. Tsitsin Main Botanical Garden, Russian Academy of Sciences, 4, ul. Botanicheskaya, Moscow, 127276 Russia, e-mail:;

2Russian State Agrarian Correspondence University, 1, ul. Fuchika, Balashikha, Moscow Province, 143900 Russia

Received August 28, 2013

Snow mold is caused by pathogenic low-temperature fungi and fungi-like pathogens which can attack grassy winter and perennial plants and even woody plants. Pathogens infect crops in autumn and develop under snow and early in spring at low temperatures. History of the emergence of the terminology for pathogenic low-temperature fungi, the appearance of the «snow mold» terms and domestic «vyprevaniye» (eng. «dumping-off») are represented, and various snow molds and their pathogens in Russia are described. Recent advances in agrochemical, chemical, biological and breeding technologies used to provide snow mold control are under consideration in detail, particularly data obtained in North America (USA, Canada), North Europe (Sweden, Norway, Finland), Asia (Japan) with special attention to the investigations in Russia. Crop rotation using crops being not the host plants of these pathogens and thus resistant to them is considered as rather effective agrotechnology decreasing plant damage from snow molds, and also deep tillage, early or late sowing, show thawing by its covering with black materials, monthly use of some composts are also discussed. Seed sterilization against Microdochium nivale infection is widely used in North Europe. In Russia the Baytan, Benlat, Granoza and Pentiuram are used on winter crops against Typhula incarnata and T. idahoensis (syn. T. ishikariensis). Fungicides are economically effective in the years of strong damage from snow molds, at that, pathogenic species differ in sensitiveness to fungicides. Characteristics of definite fungicides used are discussed. Biological suppression also is a method for anti-snow mold protection. For the purposes, the antagonistic agents effective in summer when snow molds are dormant, as well as low temperature agents active in the period of snow mold development can be used. Natural suppressors such as composts and antagonistic organisms were successful against Typhula spp. No special breeding for plant resistance to snow molds was carried out in Russia until recent time, nevertheless, in numerous investigations some grain crop species resistant to snow mold have been revealed. Particularly, by immunological assessment of 500 specimens from the VIR World Collection (N.I. Vavilov All-Russian Institute of Plant Industry, St. Petersburg) and domestic varieties the resistant forms are described as follows: Shatilovskaya tetra, Populyatsiya I-82 tetrs, Sibirskaya krupnozernaya, Taezhnaya, Kirovskaya 89, Vyatka 2, Dymka, Rosinka, Ilim, Falenskaya 4, Purga, F4-92, Chulpan 3, Korotkostebel’naya 6, Khar’kovskaya 88, Tatarskaya 1, Bezenchukskaya 88, Volkhova, Takovskaya 29; LAD-287 St-2614, Antonnisnie, Leelondzkie Kartowe № 1, Leelondzkie Krotnoslomix × Baltycnie (Poland), Epos, Rerus (DDR), Inzucht 74/2, Inzucht 108/8 (Sweden), к-10953 (Finland), Feniks (Belgium), к-11385 (Yugoslavia), к-11150, к-11389 (Portugal), к-11306 (Argentina), к-11179, к-11180 (USA), к-11388 (Tajikistan), к-11398 (Georgia), к-11131 (Azerbaijan), Belta tetra (Belarus), Beve (Ukraine).

Keywords: low temperature fungi, snow molds, anti-snow mold agrotechnologies, chemical fungicides, biomethod, breeding for plant resistance to snow molds.


Full article (Rus)

Full text (Eng)



  1. Matsumoto N. Snow molds: a group of fungi that prevail under snow. Minireview. Microbes Environ., 2009, 24(1): 14-20 CrossRef
  2. Hoshino T., Xiao N., Tkachenko O.B. Cold adaptation in phytopathogenic fungi causing snow molds. Mycoscience, 2009, 50(1): 26-38 CrossRef
  3. Morita R.Y. Psychrophilic bacteria. Bacteriol. Rev., 1975, 39: 144-167.
  4. Hoshino T., Matsumoto N. Cryophilic fungi to denote in the cryosphere. Fungal Biology Reviews, 2012, 26(2-3): 102-105 CrossRef
  5. Gulyaev V.V. Trudy Tatarskoi lesnoi opytnoi stantsii (Kazan'), 1948, 9: 44-49.
  6. Kuz'mina N.A., Kuz'min S.R. Khvoinye boreal'noi zony, 2007, XXIV(4-5): 454-460.
  7. Tumanov I.I., Borodina I.N., Oleinikova T.V. Trudy po prikladnoi botanike, genetike, selektsii, 1935, 3(6): 3-57.
  8. Tupenevich S.M. Trudy Vsesoyuznogo nauchno-issledovatel'skogo instituta zashchity rastenii, 1966, 28: 126-130.
  9. Kuperman F.M., Moiseichik V.A. Vyprevanie ozimykh kul'tur [The «dumping-off» in winter crops]. Moscow-St. Petersburg, 1977.
  10. Dan'kova T.N. Russkaya sel'skokhozyaistvennaya terminologiya kontsa XX—nachala XXI vv. (na materiale terminologii rastenievodstva) [Russian agricultural terminology from the end of XX to the beginning of XXI century in plant industry]. Voronezh, 2009.
  11. Nedoluzhko A.I. Vestnik DVO RAN, 2004, 4: 74-77.
  12. Shelepova O.V., Voronkova T.V., Kondrat'eva V.V., Danilina N.N. Fiziologiya i biokhimiya kul'turnykh rastenii, 2009, 41(5): 384-392.
  13. Tupenevich S.M. V sbornike: Izvestiya vysshikh kursov po prikladnoi zoologii i fitopatologii [In: Proceedings of the Highest Courses on applied zoology and phytopathology]. Leningrad, 1940, 10: 5-108.
  14. Hoshino T., Ohgiya S., Shimanuki T., Ishizaki K. Production of low temperature active lipase from the pink snow molds, Microdochium nivale (syn. Fusarium nivale). Biotechnology Letters, 1996, 18(5): 509-510.
  15. Nakajima T., Abe J. Environmental factors affecting expression of resistance to pink snow mold caused by Microdochium nivale in winter wheat. Can. J. Bot., 1996, 74(11): 1783-1788 CrossRef
  16. Iriki N., Nakajima T., Kawakami A. Reaction of winter wheat cultivars to artificially inoculated seed-born pink snow mold. Breeding Science, 1992, 52(3): 231-233 CrossRef
  17. Hsiang T., Matsumoto N., Millett S.M. Biology and management of typhula snow mold of turfgrass. Plant Disease, 1999, 83(9): 788-798 CrossRef
  18. Vergara G.V., Bughrara S.S., Jung G. Genetic variability of grey snow mould (Typhula incarnata). Mycological Research, 2004, 108(11): 1283-1290.
  19. Smith J.D. Snow molds of winter cereals: guide for diagnosis, culture, and pathogenicity. Can. J. Plant Pathol., 1981, 3(1): 15-25 CrossRef
  20. Gaudet D.A., Bhalla M.K. Survey for snow mold diseases of winter cereals in central and northern Alberta. Can. Plant Dis. Surv., 1988, 68(1): 15-18.
  21. Groves J.W., Bowerman C.A. Sclerotinia borealis in Canada. Can. J. Bot., 1955, 33: 591-594.
  22. Tomiyama K. Studies on the snow blight disease of winter cereals. Rep. Hokkaido Agric. Exp. Stn., 1955, 47(1): 1-234 (in Japanese with English summary).
  23. Saito I. Sclerotinia nivalis, sp. nov., the pathogen of snow mold of herbaceous dicots in Northern Japan. Mycoscience, 1997, 38: 227-236 CrossRef
  24. Lips P.E. A new species of Pythium isolated from wheat beneath snow in Washington. Mycologia, 1980, 72(6): 1127-1133 CrossRef
  25. Lips P.E., Bruehl G.W. Infectivity of Pythium spp. in snow rot of wheat. Phytopathology, 1980, 70: 723-726.
  26. Takenaka S., Arai M. Dynamics of three snow mold pathogens Pythium paddicum, Pythium iwayamai, and Typhula incarnata in barley plant tissues. Can. J. Bot., 1993, 71: 757-763 CrossRef
  27. Tkachenko O.B. Byulleten' Glavnogo botanicheskogo sada (Moscow), 2012, 198(4): 63-70.
  28. Hoshino T., Tkachenko O.B., Tronsmo A.M., Kawakami A., Morita N., Ohgiya S., Ishizaki K. Temperature sensitivity and freezing resistance among isolates of Typhula ishikariensis from Russia. Buvisindi, Icel. Agr. Sci., 2001, 14: 61-65.
  29. Khokhryakov M. Maloizvestnaya bolezn' ozimykh khlebov (sklerotiniya). Zashchita rastenii, 1935, 4: 94-97.
  30. Fisher W.R., Bruehl G.W. Efficacy of various blackening agents in hastening snow melt, a possible tool in snow mold control. Phytopathology, 1964, 54(12): 1432.
  31. Bruehl G.W., Sprague R., Fischer W.R., Nagamitsu M., Nelson W.L., Vogel O.A. Snow molds of winter wheat in Washington. Washington Agric. Exp. Stn. Bull., 1966, 677: 1-21.
  32. Kotter C.M. Ash speeds melt to aid grain growers. Western Hay and Grain Grower, 1979, January: 4-6.
  33. Gossen B.D., Hsiang T., Murray T.D. Managing snow mold disease of winter cereals and turf. Plant-microbe interactions at low temperature under snow. Chapter 2. Sapporo, Hokkaido National Agricultural Experiment Station, 2001: 13-21.
  34. Holston C.S. Observation and experiments on snow mold of winter wheat in Washington state. Plant Dis. Rep., 1953, 37: 354-359.
  35. Loveless A.R. Observations on the biology of clover rot. Ann. Appl. Biol., 1951,38: 642-664.
  36. Gould Ch.J., Byther R.S. Diseases of tulips. Washington State University Cooperative Extension. Extension Bull., 1979, 711.
  37. McKey H.C., Reader J.M. Snow mold damage in Idaho’s winter wheat. Idaho Agric. Exp. Stn. Bull., 1953, 200.
  38. Bruehl G.W. Effect of plant size on resistance to snow mold of winter wheat. Plant Dis. Rep., 1967, 51: 815-819.
  39. Bruehl G.W., Cunfer B.M. Physiologic and environmental factors that affect the severity of snow mold of wheat. Phytopathology, 1971, 61: 792-798 CrossRef
  40. Smith J.D., Jackson N., Woolhouse A.R. Fungal diseases of amenity turf grasses. NY, 1989.
  41. Nelson E.B. Craft C.M. Suppression of Typhula blight with top-dressing amended with composts and organic fertilizers. Biol. Cult. Tests, 1992, 7: 107.
  42. Huber D.M., McKay H.C. Effect of temperature, crop, and depth of burial on the survival of Typhula idahoensis sclerotia. Phytopathology, 1968, 58: 961-962.
  43. Lawton M.B., Burpee L.L. Effect of rate and frequency of application of Typhula phacorrhiza on biological control of Typhula blight of creeping bentgrass. Phytopathology, 1990, 80: 70-73 CrossRef
  44. Sprague R. Wheat snow mold in Eastern Washington 1955 to 1956. Plant Dis. Rep., 1956, 40: 640-642.
  45. Olvang H. Chemical control of winter damaging fungi in cereals. Norwegian J. Agric. Sci., 1992, 7: 55-61.
  46. Polityko P.M. Zashchita rastenii, 1988, 12: 18.
  47. Hoftun H. Lagring av purre: I. Verknad av sortar og ved hausting. Meldinger fra Norges Landbrukshøgskole, 1978, 57: 1-26.
  48. Haegermark U. Några broddehandlingeförsök på Hösten i hostvelte med benomyl och triadimefon. Växtskyddsnotiser, 1979, 43: 138-139.
  49. Ebenebe C., Fehrman H. Evolution of a number of systemic fungicides for the control of Typhula incarnata in winter barley. PflKrankh, 1974, 12: 711-716.
  50. Smith J.D., Stynes B.A., Moore K.J. Benomyl stimulated growth of a Basidiomicetes on turf. Plant Disease Reporter, 1970, 54: 774-775.
  51. Hossfeld R. Förderung der Typhula — Fäule an Wintergerate durch Rinsatz von Fungiziden zur Halmbruchbekampfung. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes, 1974, 26: 19.
  52. Cavelier M., Maroquin C. Interférence d’une epidemie provoquée pour la premiére foir en Belgique par Typhula incarnata Lasch ex Fr. et d’une recrudescence de la jaunisse nanisante de l’otge sur encourgeon. Caractéresation des symptoms at evaluation de leur incidence respective sur les rendements. Parasitica, 1978, 34: 277-295.
  53. Francis B.M. Toxic Substances in the Environment. NY, 1994.
  54. Vargas J.M. Management of Turfgrass diseases. CRC Press, Inc., Boca Raton, Florida, USA, 1994.
  55. Fushtey S.G., Frank R. Distribution of mercury residues from the use of mercurial fungicides on golf course greens. Can. J. Soil Sci., 1981, 61: 525-527 CrossRef
  56. Matthews S.L., McCracken I.R., Lonergau G. Mercury contamination of gold courses due to pesticide use. Bull. Environ. Contain. Toxicol., 1995, 55: 390-397.
  57. Spisok pestitsidov i agrokhimikatov, razreshennykh k primeneniyu na territorii Rossiiskoi Federatsii (Prilozhenie k zhurnalu «Zashchita i karantin rastenii») [List of pesticides and agrochemicals allowed for use in the Russian Federation: Supplemented to the Protection and plant quarantine journal]. Zashchita i karantin rastenii, 2014, 4.
  58. Jamalainen E.A., Fenstermacher J.M. Typhula blight, its cause, epidemiology and control. J. Sports Turf Res. Inst.,1969, 45: 6-73.
  59. Fushtey S.G. Chemical control of snow mold in bentgrass turf in southern Ontario. Can. Plant. Dis. Surv., 1980, 60: 225-231.
  60. Kallio A. Chemical control of snow mold (Sclerotinia borealis) on four varieties of bluegrass (Poa pratensis) in Alaska. Plant Dis. Rep., 1966, 50: 69-72.
  61. Saito I., Tkachenko O.B. Low temperature species of Sclerotinia causing plant diseases in winter. Chapter 10. Advances in plant diseases management. Hung-Chang Huang, Surya N. Acharya (eds.). Research Singpost, Kerala, India, 2003: 195-214.
  62. Serafinchon A. Snow mold, gray or speckled. Government of Alberta, 2001 (
  63. Watkins J.E. Turfgrass fungicide trade names. Nebraska Cooperative Extension NF 95-214 (Revised June 1999) (http://
  64. Levitin M.M., Tyuterev S.L. Zashchita i karantin rastenii, 2003, 11: 2-46.
  65. Seraya L.G. Vozbuditel' seroi (pyatnistoi) snezhnoi pleseni grib Typhula ishikariensis S. Imai: biologiya, ekologiya, patogenez i obosnovanie priemov zashchity. Kandidatskaya dissertatsiya [Gray snow mold pathogen, Typhula ishikariensis S. Imai: biological features, pathogenesis, and defense. PhD Thesis]. Moscow, 2001.
  66. Sarycheva L.M. Vliyanie regulyatorov rosta rastenii i fungitsidov na patogenez infektsionnogo vypadeniya i urozhainost' ozimykh zernovykh kul'tur. Kandidatskaya dissertatsiya [Effect of growth stimulators and fungicides on pathogenesis of infectious lesion and yield in winter grain crops. PhD Thesis]. Moscow, 2010.
  67. Kostenko E.S. Sovershenstvovanie priemov fitosanitarnogo monitoringa i zashchity gazonnykh travostoev ot osnovnykh vrednykh organizmov (snezhnoi pleseni i zhukov shchelkunov). Avtoreferat kandidatskoi dissertatsii [Improvement of phytosanitary monitoring and lawn herbage protection from main adverse organisms, the show mold and click beetles. PhD Thesis]. Moscow, 2012.
  68. Frank J.A., Sanders P.L. ICIA5504: a novel, broad-spectrum, systemic turfgrass fungicide. British Crop Protection Conf. «Pests and Diseases». Brighton, U.K, 1994, 2: 871-876.
  69. Burpee L.L. Interactions among low-temperature-tolerant fungi: Prelude to biological control. Can. J. Plant Pathol., 1994, 16: 247-250 CrossRef
  70. Matsumoto N. Biological control of snow mold. In: Plant cold hardiness /X.P. Li, T. Chen (eds.). Plenum, NY, 1998: 343-350.
  71. Nelson E.B., Craft C.M. Supression of Typhula blight with top-dressing amended with composts and organic fertilizers. Biol. Cult. Tests, 1992, 7: 107.
  72. Boulter J.I., Boland G.J., Trevors J.T. Assessment of compost for suppression of Fusarium patch (Microdochium nivale) and Typhula Blight (Typhula ishikariensis) snow molds of turfgrass. Biological Control, 2002, 25: 162-172 CrossRef
  73. Nelson E.B. Biological control of turfgrass diseases. Ext. Publ. Inf. Bull. Cornell University, Ithaca, NY, 1992, 220: 78-90.
  74. Johansson P.M., Johnsson L., Gerhardson B.Suppression of wheat-seedling diseases caused by Fusarium culmorum and Microdochium nivale using bacterial seed treatment. Plant Pathol., 2003, 52: 219-227CrossRef
  75. Levendorfs J.P., Eberhard T.H., Levendorfs J.J., Gerhardson B., Hökeberg M. Biological control of snow mould (Microdochium nivale) in winter cereals by Pseudomonas brassicacearum, MA250. BioControl, 2008, 53(4): 651-665.
  76. Kuzina E.V., Burkhanov F.F., Davshetshin T.K., Silishchev N.N., Loginov O.N. Agrarnaya Rossiya, 2011, 2: 22-24.
  77. Harder P.R., Troll J. Antagonism of Trichoderma spp. to sclerotia of Typhula incarnata. Plant Dis. Rep., 1973, 57: 924-926.
  78. Matsumoto N., Tajimi A. Preliminary experiments for biological control of snow mold caused by Typhula incarnata and T. ishikariensis. Proc. XV Int. Grassland Congr. Kyoto, Japan, 1985: 787-788.
  79. Matsumoto N., Tajimi A. Bacterial flora associated with the snow mold fungi, Typhula incarnata and T. ishikariensis. Ann. Phytopathol. Soc.Japan, 1987, 53: 250-253.
  80. Hoshino T., Morita H., Fujiwara M., Higashiyama T., Tkachenko O.B., Saito I., Matsuyama H., Yumoto I. Heat resistant bio-control agents against snow molds (Typhula incarnata and T. ishikariensis) in various materials from several cold regions. Proc. Int. Symp. on identification and use of microbial resources for sustainable agriculture. National Agr. Res. Center for Kyushu Okinawa Region, 2004: 88-97.
  81. Burpee L.L., Kaye L.M., Goulty L.G., Lawton M.B. Suppression of gray snow mold on creeping bentgrass by an isolate of Typhula phacorrhiza. Plant Disease,1987, 71: 97-100 CrossRef
  82. Lawton M.B., Burpee L.L. Effect of rate and frequency of application of Typhula phacorrhiza on biological control of Typhula blight of creeping bentgrass. Phytopathology, 1990, 80: 70-73 CrossRef
  83. Lawton M.B., Burpee L.L., Goulty L.G. Factors influencing the efficacy of a biofungicide control of control of gray snow mold on turfgrass. Proc. Br. Crop Prot. Conf.,1986, 1: 393-398.
  84. Matsumoto N., Tajimi A. Biological control of Typhula ishikariensis on perennial ryegrass. Ann. Phytopath. Soc. Jpn., 1992, 58: 741-751 CrossRef
  85. Wu C., Hsiang T., Yang L., Lin L.X. Efficacy of Typhula phacorrhiza as a biocontrol agent of gray snow mould of creeping bentgrass. Can. J. Bot., 1998, 76(7): 1276-1281.
  86. Hsiang T., Wu C., Cook S. Residual efficacy of Typhula phacorrhiza as a biocontrol agent of grey snow mold on creeping bentgrass. Can. J. Plant Pathol., 1999, 21(4): 382-387 CrossRef
  87. Hsiang T. Diversity and management of snow mold diseases of grasses. Proc. of Int. Workshop «Plant-microbe interactions at low temperature under snow». Sapporo, 1997: 132-142.
  88. Hsiang T. Biological control of turfgrass snow molds. GreenMaster, 2000, 35(5): 12-15.
  89. Wu C., Hsiang T., Yang L., Lin L.X. Efficacy of Typhula phacorrhiza as a biocontrol agent of gray snow mould of creeping bentgrass. Can. J. Bot., 1998, 76(7): 1276-1281.
  90. Wu C., Hsiang T. Mycelial growth, sclerotial production and carbon utilization of three Typhula species. Can. J. Bot., 1999, 77: 312-317 CrossRef
  91. Schneider E.F., Seaman W.L. Typhula phacorrhiza on winter wheat. Can. J. Plant Pathol., 1986, 3: 269-276 CrossRef
  92. Schneider E.F., Seamen W.L. Saprophytic behavior of three Typhula species on winter wheat substrates. Can. J. Plant Pathol.,1988, 10: 289-296 CrossRef
  93. Tazina S.V. Obosnovanie zashchity ozimykh zernovykh kul'tur ot infektsionnogo vypadeniya rastenii.Kandidatskaya dissertatsiya [Basis for winter grain crop protection from infectious lesion. PhD Thesis]. Moscow, 2005.
  94. Matsumoto N., Tkachenko O.B., Hoshino T. The pathogenic species of Typhula. In: Low temperature plant microbe interactions under snow. Sapporo, Hokkaido National Agr. Exp. Station, 2001: 49-59.
  95. Wong P.T.W., McBeath J.H. Plant protection by cold-adapted fungi. In: Biotechnological applications of cold-adapted organisms. R. Margesin, R. Schinner (eds.). Heidelberg, Germany, 1999: 177.
  96. Sheng M., Gay P.A., McBeath J.H. Determination of chitinolitic activity in under differing environmental conditions. In: Proceedings of biocontrol in new millenium: building for the future on past experience. D.M. Huber (ed.). Purdue University Press, West Lafayette,  2001: 57-62.
  97. McBeath J.H. Snow mold-plant-antagonist interactions: survival of the fittest under the snow. American Phytopathological Society press, The Plant Health Instructor, 2002 CrossRef
  98. Gaudet D.A., Laroche A. Snow mold-crop-environment interactions. In: Biotechnological applications of cold-adapted organisms. R. Margesin, F. Schinner (eds.). Springer Berlin Heidelberg, 1999: 191-202 CrossRef 
  99. Smith J.D., Davidson J.G.N. Acremonium boreale n. sp., a sclerotial, low-temperature-tolerant, snow mold antagonist. Can. J. Bot., 1979, 57: 2122-2139 CrossRef
  100. Smith J.D., Gossen B.D. Interaction of Coprinus psychromorbidus, Acremonium boreale and an unidentified low-temperature pathogen of bentgrass turf. Proc. 10th Ann. Plant Pathol. Soc. Alberta, Brooks, AB, Canada, 1989.
  101. Shchukovskaya A.G., Tkachenko O.B., Shesteperov A.A. Mikogel'minty ozimoi pshenitsy — potentsial'nye bioagenty griba Microdochiumnivale. Materialy konferentsii «Teoriya i praktika bor'by s parazitarnymi boleznyami» [Proc. Conf. «Theoretical and practical bases for defense against parasitic diseases»]. Moscow, 2012, Issue 13: 466-468.
  102. Shchukovskaya A.G., Tkachenko O.B., Shesteperov A.A. Materialy Mezhdunarodnoi nauchnoi konferentsii «Sovremennye problemy obshchei parazitologii» [Proc. Int. Conf. «Current problems in general parasitology». Moscow, 2012: 397-401]. Moscow, 2012: 397-401.
  103. Shchukovskaya A.G. Materialy Mezhdunarodnoi nauchnoi konferentsii «Sovremennye problemy obshchei parazitologii» [Proc. Int. Conf. «Current problems in general parasitology»]. Moscow, 2012: 401-404.
  104. Shchukovskaya A.G., Tkachenko O.B., Shesteperov A.A. Materialy 10-go Mezhdunarodnogo nematologicheskogosimpoziuma [Proc. 10th Int. Symp. on nematodes]. Bol'shie Vyazemy, 2013: 83-85.
  105. Tkachenko O.B. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2003, 3: 101-108.
  106. Bruehl G.W., Sprague R., Fischer W.R., Nagamitu M., Nelson W.L., Vogel O.A. Snow molds of winter wheat in Washington. Washington Agric. Exp. Stn. Bull., 1966, 677: 1-21.
  107. Sunderman D.W. Modifications of the Cormack and Lebeau technique for inoculating winter wheat with snow mold-causing Typhula species. Plant Dis. Rep., 1964, 48: 394-396.
  108. Nakajima T., Abe J. A method for assessing resistance to snow molds Typhula incarnata and Microdochium nivale in winter wheat incubated at the optimum growth temperature ranges of the fungi. Can. J. Bot., 1990, 68: 343-346 CrossRef
  109. Ovsyankina A.V. Struktura populyatsii vozbuditelei kornevoi gnili i snezhnoi pleseni ozimoi rzhi i otbor iskhodnogo materiala dlya selektsii ustoichivykh sortov. Kandidatskaya dissertatsiya [Structure of the populations of winter rye root rot and snow mold pathogens and selection of parental forms in breeding for resistance. PhD Thesis.]. Moscow, 2000.
  110. Iriki N., Kawskami A., Nakajima T. et al. Field resistance of winter wheat to Typhula ishikariensis and Microdochium nivale. Abstracts of NJF seminar no 311 «Plant and microbe adaptation to winter environments in northern areas». Akureyri, Iceland, 2000: 23-24.
  111. Iriki N., Kuwabara T., Takata K., Yoshida M., Kawakami A. Physiological and quality traits of Aegilops cylindrica accession screened for snow mold resistance. Proc. 9th Int. Wheat Genetic Symp. Saskatoon, Saskatchewan, Canada, 1998, V. 5: 37-38.
  112. Eiges N.S., Kuznetsova N.L., Volchenko G.A., Artamonov V.D., Vaisfel'd L.I., Dolgova S.P., Kakhrimanova N.N., Volchenko S.G. Visnyk Ukrainskogo tovarystva genetykiv i selektsioneriv, 2009, 7(2): 269-275.
  113. Eiges N.S., Volchenko G.A., Vaisfel'd L.I., Volchenko S.G. Materiali V Vseukraїnskoi naukovo-praktichnoi konferentsii molodikh uchenikh «Ekologichni problemi sil'skogospodarskogo virobnitstva» [Proc. V Ukrainian Conf. «Ecological problems in agriculture»]. Yaremche, 2011: 28-29.
  114. Smith J.D., Cooke D.A. Dormie Kentucky bluegrass. Can J. Plant Sci., 1978, 58: 291-292.