doi: 10.15389/agrobiology.2015.1.3eng

UDC 633/635:581.4:579.64


S.E. Dunaeva1, Yu.S. Osledkin2

1N.I. Vavilov All-Russian Institute of Plant Industry, Russian Academy of Agricultural Sciences, 42, ul. Bol’shaya Morskaya, St. Petersburg, 190000 Russia, e-mail:;
2All-Russian Research Institute of Agricultural Microbiology, Russian Academy of Agricultural Sciences, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia

Received October 8, 2013

Effective sterilization of plant explants and antiseptics rules compliance do not exclude the presence of so-called covert (endophytic) bacteria in in vitro cultures. But the role of these bacteria in tissues cultures has been not enough studied whereas it was related to the explants regeneration capacity and the possibility of animal and human cells transformation under in vitro cultivation. Bacterial strains pathogenic to humans can be stably maintained in cultivated tissues and ex vitro plants. The broadening of bacterial environments creates ecological and genetic risks leading to necessity of careful monitoring of endophytic communities in plants used as raw food and at use of in vitro technologies in practical plant growing and food production. Identification of bacterial microorganisms colonizing in vitroplant cultures allows studying the bacteria effect on the host, realizing special chemotherapy and developing the microorganisms’ databases. Two methods of identification are the most widespread: more available traditional one that does not allow detecting non-cultured forms (its base is the use of cultural and morphological characteristics as well as chemical and biochemical reactions) and molecular-genetic one. At the second approach different 16S-rRNA sequences are studied using metagenomic DNA and appropriate specific primers; these sequences have conserved sites identical for all prokaryotes and variable ones suitable for species specific regions identification. Internal transcribed spacers (ITS) are being mainly used to distinguish the microorganisms at the species level and even at strains one. Taxonomy of in vitro cultures’ bacterial endophytes indicates to their diversity and absence of specific composition as for cultures of plants belonging to different taxa as for different plant organs explants. Among identified endophytic bacteria potentially useful for intact plants Streptomycete, Pantoea agglomerans and others were found as well as those pathogenic for humans, e.g. Ralstonia mannitolytica, Staphylococcus epidermidis, Corynebacterium amycolatum, Bacillus neonatiensis, Salmonella and Nocaridia spp. At in vitro plant cultivation durable symptomless bacterial presence is caused on the one hand by bacterial growth repression with factors accompanying plant explants cultivation (PH, temperature below bacterial optimum, activation of the defense mechanisms), and on the other hand by simultaneous bacteria support due to exudates secreted by plant explants. The rapid bacterial cells proliferation can begin even at small changes in initial conditions, at increase in plant exudates concentrations and per se in consequence of in vitro cultivation as a stress at the absence of whole organism regulatory role. As the number of subcultivations increases a portion of plant cultures with latent bacterial contamination increases too; no-cultured endophytes have been reported to acquire the status of cultured ones. Covert bacterial contamination could depress regeneration, micropropagation, cause death of in vitro cultivated objects, restrict the protocols repeatability and concern induction of epigenetic somaclonal variability. For instance Acinetobacter and Lactobacillus plantarum filtrates extracted from degrading calluses strongly reduced shoot regeneration at inoculation in explants or addition into a medium; bacteria Mycobacterium obuense and M. aichiense repressed seeds development in in vitro cultures. The article accents the problem of gnotobiological plant cultures (specifically in in vitrocollections of plants genetic banks) development caused by difficulties in identification and elimination of bacterial microorganisms.

Кeywords: plant tissue culture, bacterial microorganisms, antibacterial therapy.


Full article (Rus)

Full text (Eng)



  1. Leifert C., Woodward S. Laboratory contamination management: the requirement for microbiological quality assurance. Plant Cell Tiss. Cult., 1998, 52: 85-88 CrossRef
  2. Leifert C., Cassells A.C. Microbial hazards in plant tissue and cell cultures. In Vitro Cell. Dev. Biol. Plant., 2001, 37(2): 133-138 CrossRef
  3. Cassells A.C. Contamination and its impact in tissue culture. Acta Hort., 2001, 560: 353-359.
  4. Leifert C., Waites W.M., Nicolas J.R. Bacterial contamination of micropropagated plant tissue cultures. J. Appl. Bact., 1989, 67: 353-361.
  5. Cassells A.C. Problems in tissue culture: culture contamination. In: Micropropagation technology and application. P.C. Debergh, R.H. Zimmerman (eds.). Kluwer Acad. Publishers, 1991: 31-44.
  6. Reed B.M., Mentzer J., Tanprasert P., Yu X. Internal bacterial contamination of micropropagated hazelnut: identification and antibiotic treatment. Plant Cell Tiss. Cult., 1998, 52: 67-70.
  7. Thomas P. A three-step screening procedure for the detection of covert and endophytic bacteria in plant tissue cultures. Current Sci., 2004, 87: 67-72.
  8. Panicker B., Thomas P., Janakiram T., Venugopalan R., Narayanap-
    pa S.B. Influence of cytokinin levels on in vitro propagation of shy suckering chrysanthemum «Arka Swarna» and activation of endophytic bacteria. In vitro Cell Dev. Biol. Plant, 2007, 43(6): 614-622 CrossRef
  9. Reed B.M., Tanprasert P. Detection and control of bacterial contaminants of plant tissue cultures. A review of recent literature. Plant Tissue Culture &. Biotechnology, 1995, 1(3): 137-142.
  10. Tanprasert P., Reed B.M. Detection and identification of bacterial contaminants from strawberry runner explants. In vitro Cell Dev. Biol. Plant, 1997, 33: 221-226.
  11. Burgutin A.B., Feoktistova N.V., Punina N.V., Ignatov A.N. Tezisy dokladov IX Mezhdunarodnoi konferentsi «Biologiya kletok rastenii in vitro i biotekhnologiya». [Proc. IX Int. Conf. «Plant cell biology in vitro and biotechnology»]. Zvenigorod, 2008: 60-61.
  12. Leifert C., Morris C., Waites W.M. Ecology of microbial saprophytes and pathogens in tissue cultured and field grown plants. CRC Crit. Rev. Plant Sci., 1994, 13: 139-183 CrossRef
  13. Thomas P., Swarna G.K., Roy P.K., Prakash P. Identification of culturable and originally non-culturable endophytic bacteria isolated from shoot tip cultures of banana cv. Grand Naine. Plant Cell Tiss. Org. Cult., 2008, 93: 55-63 CrossRef
  14. Rafferty S.M., Williams S., Falkiner F.R., Cassels A.C. Persistence in in vitro cultures of cabbage (Brassica oleracea var. capitata L.) of human food poisoning pathogens: Esherichia coli and Serratia marcescens. Proc. Int. Symp. on Meth. and Marks. for Qual. Assur. in Micropropagation.A.C. Cassels, B.M. Doyle, R.F. Curry (eds.). Acta Hort., 2000, 530(ISHS): 145-151.
  15. Pirttilä A.M., Laukkanen H., Pospiech H., Myllyla R., Hohtola A. Detection of intracellular bacteria in the buds of Scots pine (Pinus sylvestris L.) by in situ hybridization. Appl. Environ. Microbiol., 2000, 66: 3073-3077 CrossRef
  16. Pirttilä A.M. Endophytes in the buds of Scots pine (Pinus sylvestris L.). Doc. Thesis. Acta Univ. Ouluensis, Ser. A Sci. Rerum Nat., 2001, 36: 1-55.
  17. Pirttilä A.M., Joensuu P., Pospiech H., Jalonen J., Hohtola A. Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiologia Plantarum, 2004, 121: 305-312 CrossRef
  18. Pirttilä A.M., Podolich O., Koskimäki J.J., Hohtola E., Hohtola A. Role of origin and endophyte infection in browning of bud-derived tissue cultures of Scots pine (Pinus sylvestris L.). Plant Cell Tiss. Org. Cult., 2008, 95: 47-55 CrossRef
  19. Kamoun R., Lepoivre P., Boxus P. Evidence for the occurrence of endophytic prokaryotic contaminants in micropropagated plantlets of Prunus cerasus cv. Montmorency. In: Pathogen and microbial management in micropropagation. A.C. Cassells (ed.). Kluwer Acad. Publishers, Dordrecht, 1997: 145-148.
  20. De Almeida C.V., Andreote F.D., Yara R., Tanaka F.A.O., Azevedo J.L., De Almeida M. Bacteriosomes in axenic plants: endophytes as stable endosymbionts. Microbiol Biotech., 2009, 25: 1757-1764 CrossRef
  21. Thomas P., Swarna G.K., Patil P., Rawal R.D. Ubiquitous presence of normally non-culturable endophytic bacteria in field shoot-tips of banana and their gradual activation to quiescent cultivable form in tissue cultures. Plant Cell Tiss. Org. Cult., 2008, 93: 39-54 CrossRef
  22. Habiba U., Reza S., Saha M.L., Khan M.R., Hadiuzzaman S. Endogenous bacterial contamination during in vitro culture of Banana: identification and prevention. Plant Tiss. Cult., 2002, 12: 117-124.
  23. Ryan R.P., Germaine K., Franks A., Ryan D., Dowling D.N. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett., 2008, 278(1): 1-9.
  24. Saens E., Borda C., Renata L., Da Silva M.G., Padilla G. Searching for new antibiotics in endophytic microorganisms. Proc. 2nd Int. Symp. on Biological Control of Bacterial Plant Diseases. Orlando, FL, USA, 2008: 71 CrossRef
  25. Markova Yu.A., Romanenko A.S., Dukhanina A.V. Mikrobiologiya, 2005, 74(5): 663-666.
  26. Lacroix B., Tzfira T., Vainstein A., Citovsky V. A sase of promiscuity: Agrobacterium’s endless hunt for new partners. Trends Genet., 2006, 22: 29-37 CrossRef
  27. Bulgakov V.P., Kiselev K.V., Yakovlev K.V., Zhuravlev Y.N., Gont-
    charov A.A., Odintsova N.A. Agrobacterium-mediated transformation of sea urchin embryos. Biotechnol. J., 2006, 1: 454-461 CrossRef
  28. Tikhonovich I.A., Provorov N.A. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2011, 3: 3-9.
  29. Thomas P. In vitro decline in plant cultures: detection of a legion of covert bacteria as the cause for degeneration of long-term micropropagated triploid watermelon cultures. Plant Cell Tiss. Org. Cult., 2004, 77: 173-179 CrossRef
  30. Holland M.A., Polacco J.C. PPFMs and other covert contaminants: is there more to plant physiology than just plant? Annu. Rev. Plant Physiol., 1994, 45: 197-209 CrossRef
  31. Horsch R.B., King J. A covert contaminant of cultured plant cells: elimination of a Hyphomicrobium sp. from cultures of Datura innoxia (Mill.). Plant Cell Tiss. Org. Cult., 1983, 2: 21-28.
  32. Hallmann J., Quadt-Hallmann A., Mahaftee W.F. Endophytic bacteria in agricultural crops. Can. J. Microbiol., 1997, 43: 895-914.
  33. Baldani J.I., Caruso L., Baldani V.L.D., Goi S.R., Dobereiner J. Recent advances in BNF with non-legume plants. Soil Biol. Biochem., 1997, 29: 911-922.
  34. Ulrich K., Ulrich F., Ewald D. Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol. Ecol., 2008, 63: 169-180 CrossRef
  35. Van Doorn W.G., De Stigter H.C.M., De Witte Y., Boekestein A. Micro-organisms at the cut surface and in xylem vessels of rose stems: a scanning electron microscope study. J. Appl. Bact., 1991, 70: 34-39.
  36. Thomas P. Reemergence of covert bacteria Bacillus pumilus and Brevibacillus sp. in microbe-freed grape and watermelon stocks attributable to occasional autoclaving defying residual spores from previous cycles. Plant Cell Tiss. Org. Cult., 2006, 87: 155-165 CrossRef
  37. Thomas P. Isolation of an ethanol-tolerant endospore-forming Gram-negative Brevibacillus sp. as a covert contaminant in grape tissue cultures. J. Appl. Microbiol.,2006,101: 764-774 CrossRef
  38. Laukkanen H., Soini H., Kontunen-Soppela S., Hohtola A., Viljanen M. A mycobacterium isolated from tissue cultures of mature Pinus sylvestris interferes with growth of Scots pine seedlings. Tree Physiol., 2000, 20(13): 915-920.
  39. Pence V.C., Sandoval J.A. Controlling contamination during in vitro collection. In: In vitro collection techniques for germplasm conservation. V.C. Penke, J.A. Sandoval, V.M. Villalobos, F. Engelmann (eds.). IPGRI Technical Bulletin (Rome, Italy), 2002, 7: 30-40.
  40. Roy A., Saha P.K. Factors involved during in vitroculture of Calamus rotang. J. Trop. For. Sci., 1997, 10: 225-232.
  41. Smith R.H., Burrows J., Kurten K. Challenges associated with micropropagation of Zephyranthes and Hippeastrum sp. (Amaryllidaceae). In vitro Cell Dev. Biol. Plant., 1999, 35: 281-282.
  42. Buckley P.M., De Wilde E.N., Reed B.M. Characterization and identification of bacteria isolated from micropropagated mint plants. In vitro Cell Dev. Biol. Plant, 1995, 31: 58-64.
  43. Reed B.M., Buckley P.M. Tissue Culture Contaminants Handbook. USDA-ARS, Corvallis, OR. 1999 (Lab manual).
  44. Singha S., Bissonnette G.K., Double M.L. Methods for sterilizing instruments contaminated with Bacillus sp. from plant tissue cultures. Hort. Sci., 1987, 22: 659.
  45. Stead D.E., Elphinstone J.G., Weller S., Smith N., Hennessy J. Modern methods for characterizing, identification and detecting bacteria associated with plants. Acta Hort., 2000, 530: 45-57.
  46. Opredelitel' bakterii Berdzhi (perevod s angliiskogo) /Pod red.. Dzh. Khoult, N. Krig, P. Snit, Dzh. Steil, S. Uil'yams. Tom 1. [Bergey’s Manual of systematic bacteriology. J.G. Holt, N.R. Krieg, P.H.A. Sneath, J.T. Staley, S.T. Williams (eds.). V. 1]. Moscow, 1997.
  48. Greizen K., Loeffelholz M., Purohit A., Leong D. PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J. Clin. Microbiol., 1994, 32: 335-351.
  49. Wilson K.H. Detection of culture-resistant bacterial pathogens by amplification and sequencing of ribosomal DNA. Clin. Infect. Dis., 1994, 18: 958-962 CrossRef
  50. Garcia-Martinez J., Acinas S.G., Rodrigues-Valere F. Use of the 16S-23S ribosomal genes spacer region in studies of prokaryotic diversity. J. Microbiol. Meth., 1999, 36: 55-64.
  51. Thomas P., Soly T.A. Endophytic bacteria associated with growing shoot tips of banana (Musa sp.) cv. Grand Naine and the affinity of endophytes to the host. Microb. Ecol., 2009, 58(4): 952-964 CrossRef
  52. Safronova V.I., Chizhevskaya E.P., Belimov A.A., Pavlova E.A. Sel’skokhozyaistvennaya Biologiy  [Agricultural Biology], 2011, 3: 61-64.
  54. Pinevich A.V. Mikrobiologiya. Biologiya prokariotov [Microbiology. Biology of prokaryotes. V. 1.]. Tom 1. St. Petersburg, 2007.
  55. Leifert C. Quality assurance systems for plant cell and tissue culture: The problem of latent persistence of bacterial pathogens and Agrobacterium-based transformation vector systems. Acta Hort., 2000, 530: 87-91.
  56. Ewald D., Zaspel I., Naujoks G., Behrendt U. Endogenous bacteria in tissue cultures of conifers — appearance and action. Acta Hort., 2000, 530: 137-143.
  57. Thomas P., Panicker B., Janakiram T., Sathyanarayana B.N. In vitropropagation of «Arka Ravi» chrysanthemum on growth regulator-free medium harboring endophytic bacteria. J. Hortic. Sci. Biotech., 2009, 84(6): 653-659.
  58. Osledkin Yu.S., Levchuk S.S., Ogorodnikova V.F., Dunaeva S.E., Lupysheva Yu.V., Orlova S.Yu., Pazova Z.Kh., Truskinov E.V., Gavrilenko T.A. Mezhdunarodnaya nauchnaya konferentsiya «Molekulyarnaya genetika, genomika i biotekhnologiya» [Proc. Int. Conf. «Molecular genetics, genomics, and biotechnology»]. Minsk, 2004: 173-174.
  59. Dunaeva S.E., Pendinen G.I., Antonova O.Yu., Shvachko N.A., Volko-
    va N.N., Gavrilenko T.A. Sokhranenie vegetativno razmnozhaemykh kul'tur v in vitro i kriokollektsiyakh. Metodicheskie ukazaniya /Pod redaktsiei T.A. Gavrilenko [Storage of vegetatively propagated cultures in vitro and in cryocollections: a manual guide.  T.A. Gavrilenko (ed.)]. St. Petersburg, 2011.
  60. Cooke D.L., Waites W.M., Leifert C. Effects of Agrobacterium tumefaciens, Erwinia carotovora, Pseudomonas syringae and Xanthomonas campestris on plant tissue culture of Aster, Cheiranthus, Delphinium, Iris and Rosa:disease development in vivo as results of latent infection in vitro. J. Plant Dis. Protect., 1992, 99: 469-481.
  61. Thomas P., Prabhakara B.S., Pitchaimuthu M. Cleansing the long-term micropropagated triploid watermelon cultures from covert bacteria and field testing the plants for clonal fidelity and fertility during the 7-10 year period in vitro. Plant Cell Tiss. Org. Cult.,2006, 85: 317-329 CrossRef
  62. Misra P., Gupta N., Toppo D.D., Pandey V., Mishra M.K., Tuli R. Establishment of long-term proliferating shoot cultures of elite Jatropha curcas L. by controlling endophytic bacterial contamination. Plant Cell Tiss. Org. Cult., 2010, 100: 189-197 CrossRef
  63. Leifert C., Waites W.M., Camotta H. Lactobacillus plantarum: a deleterious contaminant of plant tissue cultures. J. Appl. Bact., 1989, 67: 363-370.
  64. Dias A.C.F., Costa F.E.C., Andreote F.D., Lacava P.T., Teixeira M.A., A s -
    s u m pção L.C., Araújo W.L., Azevedo J.L., Melo I.S. Isolation of micro propagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J. Microbiol. Biotechnol., 2009, 25: 189-195 CrossRef
  65. Polyakov A.V., Chikrizova A.F., Kalyaeva M.A., Zakharchenko N.S., Balokhina N.V., Bur'yanov Ya.I. Fiziologiya rastenii, 1998, 45(4): 882-887.
  66. Kalyaeva M.A., Zakharchenko N.S., Doronina N.B., Rukavtsova E.B., Ivanova E.G., Alekseeva E.E., Trotsenko Yu.A., Bur'yanov Ya.I. Fiziologiya rastenii, 2001, 48(4): 596-599 CrossRef
  67. Kalyaeva M.A., Doronina N.B., Ivanova E.G., Trotsenko Yu.A., Bur'yanov Ya.I. Biotekhnologiya, 2003, 2: 38-44.
  68. Shirokikh I.G., Shupletsova O.N., Shirokikh A.A. Doklady Rossiiskoi akademii sel'skokhozyaistvennykh nauk, 2007, 5: 23-25.
  69. McFall-Ngai M. Unseen forces: the influence of bacteria on animal development. Devel. Biol., 2002, 242: 1-14 CrossRef
  70. Murthy B.N.S., Vettakkorumakankav N.N., KrishnaRaj S., Odumeru J., Saxena P. Characterization of somatic embryogenesis in Pelargonium × hortorum mediated by a bacterium. Plant Cell Rep., 1999, 18: 607-613.
  71. Luna C., Collavino M., Mroginski L., Sansberro P. Identification and control of bacterial contaminants from Ilex dumosa nodal segments culture in a temporal immersion bioreactor system using 16S rDNA analysis. Plant Cell Tiss. Org. Cult., 2008, 95(1): 13-19.
  72. Lata A.H., Li X.C., Silva B., Moraes R.M., Halda-Alija L. Identification of IAA-producing endophytic bacteria from micropropagated Echinacea plants using 16S rRNA sequencing. Plant Cell Tiss. Org. Cult., 2006, 85(3): 353-359 CrossRef
  73. Thomas P., Kumari S., Swarna G.K., Gowda T.K.S. Papaya shoot tip associated endophytic bacteria isolated from in vitro cultures and host-endophyte interaction in vitro and in vivo. Can. J. Microbiol., 2007, 3(3): 380-390 CrossRef
  74. Iseneger D.A., Taylor P.W.J., Mullins K., McGregor G.R., Barlus M., Holchinsoo J.F. Molecular detection of a bacterial contaminant Bacillus pumilus in symptomless potato plant tissue cultures. Plant Cell Rep., 2003, 21(8): 814-820 CrossRef
  75. Thomas P., Kumari S. Inconspicuous endophytic bacteria mimicking latex exudates in shoot-tip cultures of papaya. Sci. Hort., 2010, 124(4-1): 469-474 CrossRef
  76. Liu T.-H., Hsu N.-W., Wu R.-Y. Control of leaf-tip necrosis of micropropagated ornamental statice by elimination of endophytic bacteria. In vitro Cell. Devel. Biol. Plant, 2005, 41(4): 546-549 CrossRef
  77. Abreu-Tarazi M.F., Navarrete A.A., Andreote F.D., Almeida C.V., Tsai S.M., Almeida M. Endophytic bacteria in long-term in vitro cultivated «axenic» pineapple microplants revealed by PCR-DGGE. J. Microbiol. Biotechnol., 2010, 26(3):555-560 CrossRef
  78. Kulkarni A.A., Kelkar S.M., Watve M.G., Krishnamurthy K.V. Characterization and control of endophytic bacterial contaminants in in vitro cultures of Piper spp., Taxus baccata subsp. wallichiana and Withania somnifera.Can. J. Microbiol., 2007, 53: 63-74 CrossRef
  79. Falkiner F.R. Antibiotics and antibiotic resistance associated witch plants, fruits and vegetables. Acta Hort., 2000, 530: 83-86.
  80. Seckinger G.R., Torres K.C. Physical and chemical means of controlling contamination in plant tissue culture. Proc. World Congress on in vitro Biol. S. Francisco, California, USA, 2004 (