doi: 10.15389/agrobiology.2014.1.63eng

UDC 631.466.12+582.475]:630*181.351


D.V. Veselkin

Institute of Plant and Animal Ecology, Ural Branch of Russian Academy of Sciences,
202, ul. 8 Marta, Ekaterinburg, 620144 Russia,

Received January 11, 2010


To find out the peculiarities of underground parts’ architectonics variability which characterize an extent of autonomic and symbiotic adaptation of ectomycorrhizal plants in root zone, the seedlings of Pinus sylvestris L. from 45 natural and artificial localities were studied. At the territory of the Ural region the plants, 1496 samples in total, were picked out from intact forests, burnt forests, natural (arboreta) and non-forest habitats on clay, loam, and peat soils. In the experiments, the tested seedlings were also grown in greenhouse under unsterile conditions using pots filled with the mix of peat and sand to which a sample of woodland sod-podzole soil was added as an inoculum. The length of undetermined roots as an index of autonomic adaptation, and the rate of root mycorrhization as an index of symbiotic adaptation were estimated. Under similar conditions, the individual’s variability on mycorrhization was shown to be higher comparing to the variability on undetermined roots length. Both these traits were mostly determined by environmental conditions depending on locality. For root length and mycorrhization rate, the component, related with differences between groups due to locality made 52 and 75 % of the total variance, respectively. Local environment modifications between the habitats within a group of habitat resulted in 14 % (root length) and 7 % (mycorrhization rate) of the total variance. So, from the total variance on these traits 34 и 18 % at most are due to individual variability. These data characterize the ectomycorrhial symbiosis as a coenotic facility to increase a diversity of ectomycorrhizal plants in root zone. Its effect results in qualitative changes in these organs and depends on plenty, activity, and inter- and intraspecial differences of mycobionts.

Keywords: root system, symbiosis, ectomycorrhizae, variability, Pinus sylvestris.


Full article (Rus)



1. Yurtsev B.A. Zhiznennye formy v ekologii i sistematike rastenii [Lifeforms in plant ecology and taxonomy]. Moscow, 1986: 9-23.
2. Notov A.A. Zhurnal obshchei biologii, 1999, LX(1): 60-79.
3. Shemakhanova N.M. Mikotrofiya drevesnykh porod [Mycotrophy of timbers]. Moscow, 1962.
4. Marx D.H., Bryan W.C. Growth and ectomycorrhizal development of loblolly pine seedlings in fumigated soil infected with fungal symbiont Pisolithus tinctorius. Forest Science, 1975, XXI(3): 245-254.
5. Cudlín P., Mejstrík V., Skoupý J. Effect of pesticides on ectomycorrhizae of Pinus sylvestris seedlings. Plant and Soil, 1983, LXXI(1-3): 353-361.
6. Ahonen-Jonnarth U., Finlay R.D. Effects of elevated nickel and cadmium concentrations on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant and Soil, 2001, CCXXXVI(2): 129-138. CrossRef
7. Khasa P.D., Sidger L., Chakravarty P., Dancik B.P., Erickson L., Mc Curdy D. Effect of fertilization on growth and ectomycorrhizal development of container-grown and bare-root nursery conifer seedlings. New Forests, 2001, XXII (3): 179-197.
8. Chen Y.L., Kang L.H., Malajczuk N., Dell B. Selecting ectomycorrhizal fungi for inoculating plantations in south China: effect of Scleroderma on colonization and growth of exotic Eucalyptus globulus, E. urophylla, Pinus elliottii and P. radiate. Mycorrhiza, 2006, XVI(4): 251-259. CrossRef
9. Mamaev S.A. Formy vnutrividovoi izmenchivosti drevesnykh rastenii (na primere semeistva Pinaceae na Urale) [Interspecial variability in timbers Pinaceae in Ural region]. Moscow, 1973.
10. Rostova N.S. Struktura i izmenchivost' korrelyatsii morfologicheskikh priznakov tsvetkovykh rastenii. Avtoreferat doktorskoi dissertatsii [Structure and variability of morphological correlations in flowerings. DSc Thesis]. St. Petersburg, 2000.
11. Veselkin D.V., Sannikov S.N., Sannikova N.S. Specific features of root system morphology and mycorrhiza formation in Scots pine seedlings from burned-out areas. Russian Journal of Ecology, 2010, XLI(2): 139-146. CrossRef
12. Veselkin D.V. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2006, 4: 12-18.
13. Veselkin D.V. Agrarnaya Rossiya, 2009, spetsial'nyi vypusk (Materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii «Aktual'nye problemy dendroekologii i adaptatsii rastenii»): 53-54.
14. Veselkin D.V. Matetialy Vserossiiskoi konferentsii «Fundamental'nye i prikladnye problemy botaniki v nachale XXI veka». Chast' 1. Strukturnaya botanika. Embriologiya i reproduktivnaya biologiya [Proc. Conf. «Fundamental and applied botany at the beginning of the XXI. Part 1. Structural botany. Embryology and reproductive biology»]. Petrozavodsk, 2008: 168-171.
15. Vorobeichik E.L. Ekologicheskoe normirovanie toksicheskikh nagruzok na nazemnye ekosistemy. Avtoreferat doktorskoi dissertatsii [Ecological valuation of toxic loading in terrestrial ecosystems. DSc Thesis]. Ekaterinburg, 2003.
16. Plokhinskii N.A. Biometriya. 2-e izdanie[Biometry]. Moscow, 1970.
17. Sokal R.R., Rohlf F.J. Biometry: the principles and practice of statistics in biological research. NY, 1995.
18. Lemeshko B.Yu., Lemeshko S.B. Metrologiya, 2005, 2: 3-23.
19. Zaitsev G.N. Matematicheskaya statistika v eksperimental'noi botanike [Mathematical statistics in experimental botany]. Moscow, 1984.
20. Van der Heijden E.W., Kuyper T.W. Does origin of mycorrhizal fungus or mycorrhizal plant influence effectiveness of the mycorrhizal symbiosis? Plant and Soil, 2001, CCXXX(2): 161-174. CrossRef
21. Hoeksema J.D., Thompson J.N. Geographic structure in a widespread plant—mycorrhizal interaction: pines and false truffles. J. Evol. Biol., 2007, XX(3): 1148-1163. CrossRef
22. Lewis J.D., Thomas R.B., Strain B.R. Effect of elevated CO2 on mycorrhizal colonization of loblolly pine (Pinus taeda L.) seedlings. Plant and Soil, 1994, CLXV(1): 81-88. CrossRef
23. Sudhakara R.M., Natarajan K. Coinoculation efficacy of ectomycorrhizal fungi on Pinus patula seedlings in a nursery. Mycorrhiza, 1997, VII(3): 133-138. CrossRef
24. Borisov A.Yu., Shtark O.Yu., Zhukov V.A., Nemankin T.A., Naumkina T.S., Pinaev A.G., Akhtemova G.A., Voroshilova V.A., Ovchinnikova E.S., Rychagova T.S., Tsyganov V.E., Zhernakov A.I., Kuznetsova E.V., Grishina O.A., Sulima A.S., Fedorina Ya.V., Chebotar' V.K., Bisseling T.,  Lemanso F., Dzhianinazzi-Pirson V., Rate P., Sankhuan Kh., Stougaard I., Berg G., Makfi K., Ellis N., Tikhonovich I.A. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2011, 3: 41-47.
25. France R. C., Reid C.P.P. Interaction of nitrogen and carbon in the physiology of ectomycorrhizae. Canadian Journal of Botany, 1983, LXI(3): 964-984. CrossRef
26. Ohtonen R., Väre H., Markola A.M., Ohtonen A., Ahonen-Jonnarth U., Tarveinen O. A review of forest soil biology under the influence of gaseous pollutants and CO2. Aquilo. Ser. Botanica, 1993, XXXII: 41-54.
27. Noland T.L., Mohammed G.H., Scott M. The dependence of root growth potential on light level, photosynthetic rate, and root starch content in jack pine seedlings. New Forests, 1997, XIII(1-3): 105-119.
28. Brunner I., Brodbeck S. Response of mycorrhizal Norway spruce seedlings to various nitrogen loads and sources. Environmental Pollution, 2001, CXIV: 223-233. CrossRef
29. Hobbie E.A., Colpaert J.V. Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytologist, 2003, CLVII(1): 115-126. CrossRef
30. Nilsson L.O., Wallander H. Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization. New Phytologist, 2003, CLVIII(2): 409-416. CrossRef
31. Cairney J.W.G., Meharg A.A. Influences of anthropogenic pollution on mycorrhizal fungal communities. Environmental Pollution, 1999, CVI(2): 169-182. CrossRef
32. Shubin V.I. Gribnye soobshchestva lesnykh ekosistem [Fungal associations in woodland ecosystems]. Moscow-Petrozavodsk, 2004: 272-286.
33. Bastias B.A., Xu Z.H., Cairney J.W.G. Influence of long-term repeated prescribed burning on mycelial communities of ectomycorrhizal fungi. New Phytologist, 2006, CLXXII(1): 149-158. CrossRef
34. Karatygin I.V. Koevolyutsiya gribov i rastenii [Fungi and plants: coevolution]. St. Petersburg, 1993.
35. Wilkinson D.M., Dickinson N.M. Metal resistance in trees: the role of mycorrhizae. Oikos, 1995, LXXII(2): 298-300. CrossRef
36. Cairney J.W.G. Intraspecific physiological variation: implications for understanding functional diversity in ectomycorrhizal fungi. Mycorrhiza, 1999, IX(3): 125-135. CrossRef