doi: 10.15389/agrobiology.2014.1.86eng

UDC 635.53:581.524

SEED ALLELOPATHY EFFECT IN VEGETABLE CELERY CROPS

A.F. Bukharov, D.N. Baleev

All-Russian Research Institute of Olericulture, Russian Academy of Agricultural Sciences,
str. 500, d. Vereya, Moscow Region, 140153 Russia,
е-mail: baleev.dmitry@yandex.ru

Received March 23, 2011

 

Allelopathic effect of aqueous extract (2.5, 5.0, and 10.0 %) from donor seeds (Apium graveolens cultivar Kupidon, Petroselinum crispum cultivar Lyubasha, Pastinaca sativa cultivar Kulinar, Anethum graveolens cultivar Kentavr) on seed germination in testers Raphanus sativus, Lactuca sativa, Brassica chinesis var. japonica, Lepidium sativum, Brassica juncea was examined in laboratory experiment (distilled water used as a control). For all tested crops, a negative general adaptability was characteristic. For fennels and celeries, the strong, but unstable allelopathy was detected. They completely depressed seed germination in some crops, including salad and watercress salad. Parsley and parsnip were less active, but had more stable allelopathic effect. The most stable results were obtained in control. Donor and tester relationship can be used in mathematical modelling to study the allelopathy phenomenon by statistical methods.

Keywords: allelopathy, seeds, tester, donor, extract, celery, parsley, parsnip, fennel.

 

Full article (Rus)

 

REFERENCES

1. Grodzinskii A.M. Eksperimental'naya allelopatiya [Experimental allelopathy]. Kiev, 1986.
2. Grodzinskii A.M. Allelopatiya v zhizni rastenii i ikh soobshchestv [Allelopathy in plants and their communities]. Kiev, 1965.
3. Nikolaeva M.G., Lyanguzova I.V., Pozdova L.M. Biologiya semyan [Seed biology]. St. Petersburg, 1999.
4. Ovcharov K.E. Fiziologicheskie osnovy vskhozhesti semyan [Physiology of seed germination]. Moscow, 1969.
5. Baleev D.N., Buharov A.F. Allelopathic activity of seeds family of celery. Plant breeding and seed production, 2009, 15(4): 29-33.
6. Wu H., Pratley J., Lemerle D., An M., Liu D.L. Modem genomic approaches to improving allelopathic capability in wheat (Triticum aestivum L.). Allelopathy Journal, 2007, 19: 97-108.
7. Liu D.L., An M., Wu H. Implementation of WESIA: Whole-range evaluation of the strength of inhibition in allelopathic-bioassay. Allelopathy Journal, 2007, 19: 203-214.
8. Roy S. The coevolution of two phytoplankton species on a single resource: allelopathy as a pseudo-mixotrophy. Theoretical Population Biology, 2009, 3: 88-92 2009, 75(1): 68-75. CrossRef
9. Rashid H., Asaeda T., Uddin N. The allelopathic potential of kudzu (Pueraria montana). Weed Science, 2010, 58(3): 47-55. CrossRef
10. Benyas E., Hassan M.B., Zehtab S., Khatamian O.S. Allelopathic effects of Xanthium strumarium L. shoot aqueous extract on germination, seedling growth and chlorophyll content of lentil (Lensculinaris Medic). Romanian Biotechnological Letters, 2010, 15(3): 5223-5228.
11. Kato-Noguchi H., Seki T., Shigemori H. Allelopathy and allelopathic substance in the moss Rhynchostegium pallidifolium. Journal of Plant Physiology, 2010, 167(6): 468-471. CrossRef
12. Oracz K., Voegele A., Tarkowska D., Jacquemoud D. Myrigalone A inhibits Lepidium sativum seed germination by interference with gibberellin metabolism and apoplastic superoxide production required for embryo extension growth and endosperm rupture. Plant and Cell Physiology, 2012, 53: 81-95. CrossRef
13. Sole J., Garcia-Ladona E., Ruardij P., Estrada M. Modelling allelopathy among marine algae. Ecological Modelling, 2005, 183: 373-384. CrossRef
14. Liu D.L., An M., Johnson I.R., Lovett J.V. Mathematical modelling of allelopathy: III. A model for curve-fitting allelochemical dose-response. Nonlinearity in Biology, Toxicology and Medicine, 2003, 1: 37-50. CrossRef
15. Sinkkonen A. Density-dependent chemical interference — an extension of the biological response model. J. Chem. Ecol., 2001, 27: 1513-1523.
16. Dospekhov B.A. Metodika polevogo opyta [Methods of field trials]. Moscow, 1985.
17. Kil'chevskii A.V., Khotyleva L.V. Genetika, 1985, 21(9): 1491-1497.

back