doi: 10.15389/agrobiology.2013.1.53eng

UDC 635.649:631.522/.524:577.2

AFLP-ANALYSIS OF VARIETAL POLYMORPHYSM IN Capsicum annuum L.

E.A. Snigir'1, 2, O.N. Pyshnaya1, E.Z. Kochieva2, N.N. Ryzhova2

1All-Russian Research Institute of Breeding and Seed Production of Vegetable Crops, Russian Academy of Agricultural Sciences,
pos. VNIISSOK, Odintsovo Region, Moscow Province, 143080 Russia,
e-mail: pishnaya_o@mail.ru;
2Center “Bioengineering”, Russian Academy of Science,
7/1, prosp. 60-letiya Oktyabrya, Moscow, 117312 Russia
e-mail: ekochieva@yandex.ru

Received May 12, 2012


AFLP-system of multipoint marking was used for estimation of genetic diversity in 45 varieties of Capsicum annuum L. As a result, it was selected 8 primer combinations, which were the most informative for marking of paprika genome. Due to these primers the authors obtained the specific DNA-spectrums for each variety. In total, 956 polymorphous AFLP-fragments were detected, of which 182 fragments characterize the individual varietal genotypes. The calculated coefficients of intervarietal genetic diversity are varying from 0.005 to 0.064. On dendrogram all varieties form general cluster with weak intrinsic differentiation that indicates the low degree of genetic polymorphism. So the forming of distance basal branches, revealed in closely related cultural species C. frutescens, C. chinense and C. baccatum, reflects the potential of their genetic diversity which may be used in paprika breeding.

Keywords: Capsicum annuum, genetic diversity, genetic polymorphism, AFLP-markers.

Full article (Rus)

Full text (Eng)

 

REFERENCES

1. FAO Production year book, 2010 (http://faostat.fao.org/).
2. Pyshnaya O.N. Nauchnoe obosnovanie sistemy metodov selektsii i semenovodstva pertsa sladkogo i ostrogo dlya srednei polosy Rossii. Avtoreferat doktorskoi dissertatsii [Scientific Bases for the System of Breeding Methods and Seed Growing of Vegetable and Spice Pepper in Midland Russia, Extended Abstract of Doctoral Sci. Dissertation]. Moscow, 2005.
3. Bosland P.W., Votava E.J. Peppers: Vegetable and spice Capsicums. Crops Production Science in Horticulture, 12. CABI Publishing, Wallingford, 2000.
4. Ortiz A., Cervantes P., Zlotnik P., Van de Velde C., Slaney C., Garnham J., Turecki G., O'Donovan C., Alda M. Cross-prevalence of migraine and bipolar disorder. Bipolar Disorder, 2010, 12: 397-403.
5. Sanatombi K., Sen-Mandi S., Sharma G.J. DNA profiling of Capsicum landraces of Manipur. Sci Hort, 2010, 124: 405-408.
6. Vos P., Hogers R., Bleeker M., Reijans M., Van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M., Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucl. Acids Res., 1995, 23: 4407-4414.
7. Renganayaki K., Read J.C., Fritz A.K. Genetic diversity among Texas bluegrass genotypes (Poa arachnifera Torr.) revealed by AFLP and RAPD markers. Theor. Appl. Genet.,  2001, 102: 1037-1045.
8. Soleimani V.D., Baum B.R., Johnson D.A. Identification of Canadian durum wheat (Triticum turgidum L. subsp. durum (Desf) Husn.) cultivars using AFLP and their STS markers. Can. J. Plant Sci., 2002, 82: 35-41.
9. Kim P., Leckman J.F., Mayes L.C., Feldman R., Wang X., Swain J.E. The plasticity of human maternal brain: Longitudinal changes in brain anatomy during the early postpartum period. Behavioral Neuroscience, 2010, 124: 695-700.
10. Sensi E., Vignani R., Scali M., Masi E., Cresti M. DNA fingerprinting and genetic relatedness among cultivated of Oleaeuropaea L. estimated by AFLP analysis. Sci Hort., 2003, 97: 379-388.
11. Portis E., Acquadro A., Comino C., Lanteri S. Effect of farmer’s seed selection on genetic variation of landrace population of pepper (Capsicum annuum L.), grown in North-West Italy. Genet. Res. Crop Evol., 2004, 51: 581-590.
12. Wang F., Li F., Wang J., Zhou Y., Sun H. Genetic diversity of the selected 64 potato germplasms revealed by AFLP markers. Mol. Plant Breed., 2011, l2(4): 22-29.
13. Tümbilen Y., Frary A., Mutlu S., Doganlar S. Genetic diversity in Turkish eggplant (Solanum melongena) varieties as determined by morphological and molecular analyses. Int. Res. J .Biotechnol., 2011, 2(1): 16-25.
14.Akkale C., Yildirim Z., Yildirim M.B., Kaya C., Öztürk G., Bahattin T. Assessing genetic diversity of some potato (Solanum tuberosum L.) genotypes grown in Turkey using the AFLP marker technique. Turkish J. Field Crops, 2010, 15(1): 73-78.
15. Edwards K., Johnstone C., Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl. Acid Res., 1991, 19(6): 1349.
16. Snigir' E.A., Ryzhova N.N., Kochieva E.Z., Pyshnaya O.N.
Selskokhozyaistvennaya Biologiya [Agricultural Biology], 2011, 6: 45-50 .
17. http://www.licor.com.
18. Jaccard P. Nouvelles rescherches sur la distribution florale. Bull. Soc. Vaud.Sci. Nat., 1908, 44: 223-270.
19. Nei M., Li W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases. PNASUSA, 1979, 76: 5269-5273.
20. Statistica (Data Analysis Software System), version 6. StatSoft, Inc. 2001 (http://www.statsoft.com).
21. Swofford D.L. PAUP (and Other Methods). Phylogenetic analysis using parsimony. Sinauer Associates, Sunderland, Massachusetts, 2002
(http://www.sinauer.com/detail.php.id=8060).
22. Van de Peer Y., De Wachter R. Construction of evolutionary distance trees with TRE-ECON for Windows: accounting for variation in nucleotide substitution rate among sites. Comput. Applic. Biosci., 1997, 13: 227-230.
23. Paran I., Aftergoot E., Shifriss C. Variation in Capsicum annuum revealed by RAPD and AFLP markers. Euphytica, 1998, 99: 167-173.
24. Tam S.M., Mhiri C., Vogelaar A., Kerkveld M., Pearce S.R., Grandbastien M.A. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor. Appl. Genet., 2005, 110(5): 819-831.
25. Aktas H., Abak K., Sensoy S. Genetic diversity in some Turkish pepper (Capsicum annuum L.) genotypes revealed by AFLP analyses. African J. Biotechnol., 2009, 8(18): 4378-4386.
26. Young H.P., Marilyn A.L., West M.A., St Clair D.A. Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L.). Genome, 2004, 47: 510-518.
27. Garcia-Martinez S., Andreani L., Garcia-Gusano M., Geuna F., Ruiz J.J.  Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping together closely related traditional cultivars. Genome, 2006, 49: 648-656.
28. Rajput S., Wable G.K.J., Sharma K.M., Kubde P.D., Mula S.A. Reproducibility testing of RAPD and SSR markers in tomato. African J. Biotechnol., 2006, 5: 108-112.
29. Hiroaki E., Hiroyuki I., Tadashi T., Shigeru I. Genetic diversity of the «peruvianum-complex» (Lycopersicon peruvianum L. Mill. and L. chilense Dun.) revealed by RAPD analysis. Euphytica, 2000, 116: 23-31.

back