doi: 10.15389/agrobiology.2013.1.15eng

UDC 633.11:631.524


O.V. Krupnova

Research and Development Institute of Agriculture of the South-East, Russian Academy of Agricultural Sciences,
Saratov 410010, Russia,

Received October 17, 2011

In Russia, as one of the biggest grain manufacturer and exporter, the wheat is cultivated from west regions to the Far East, and the differences between market classes of wheat grain are of a special interest. In many countries one of the principles for dividing wheat grain on market classes is the type of cultivation in spring and winter wheat. The analysis of accessible publications has shown discrepancy of the conclusions about distinctions between these classes on test weight of a grain, grain protein and gluten content and composition, a gliadin/glutenin ratio, a falling number, dough rheology, parameters of alveogramms, farinogramms, mixogramms, and also on baking properties. As a result of weather conjuncture, the spring wheat cultivars succeed in some regions, but the winter wheat cultivars — in other ones.

Keywords: spring wheat, winter wheat, grain protein content, gliadin, glutenin, dough rheology, baking properties.


Full article (Rus)

Full text (Eng)


1. Shewry  P.R. Wheat. J. Exp. Bot., 2009, 60: 1537-1553.
2. Altenbach   S.B.,  Tanaka  Charlene  K.,  Hurkman  W.J.,  Vensel  W.H. Expression of globulin-2, a member of the cupin superfamily of proteins with similarity to known food allergens, is increased under high temperature regimens during wheat grain development. J. Cereal Sci., 2009, 49: 47-54. 
3. Koz'mina  N.P. Biokhimiya zerna i produktov ego pererabotki [Biochemistry of Cereal Grain and Its Derivatives]. Moscow, 1976.
4. Stadnik  G.I. Selektsiya polevykh kul'tur na Yugo-Vostoke [Breeding Field Crops in the South-East]. Saratov, 1982: 73-79.
5. Marushev  A.I.,  Stadnik  G.I. Nauchnyetrudy NIISKH Yugo-Vostoka, 1978, 37: 107-108.
6. Polityko  P.M.,  Parygina  M.N.,  Vol'pe  A.A.,  Magurova  A.M.,  Kalanchina  A.S.,  Nikiforov  V.M.,  Berkutova  N.S. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2010, 3: 71-76.
7. Larmour  R.K. A comparison of hard red winter and hard red spring wheats. Agricultural Experiment Station. Kansas State College of Agriculture and Applied Science, Manhattan, KS, 1940, Bull. № 289: 1-57.
8. Chung O.K.,  Ohm J.B.,  Lookhart  G.L.,  Bruns R.F. Quality characteristics of hard winter and spring wheats grown under an overwintering condition. J. Cereal Sci., 2003, 37: 91-99.
9. Maghirang E.B.,  Lookhart G.L.,  Bean S.R.,  Pierce R.O.,  Xie  F.,
Caley  M.S.,  Wilson  J.D.,  Seabourn  B.W.,  Ram  M.S.,  Park S.H.,
Chung  O.K.,  Dowell  F.E. Comparison of quality characteristics and breadmaking functionality of hard red winter and hard red spring wheat. Cereal Chemistry, 2006, 83: 520-528.
10. Koppel R.,  Ingver  A. A comparison of the yield and quality traits of winter and spring wheat. Agronomijas vestis (Latvian Journal of Agronomy), 2008, 11: 83-89.
11. Park S.-H.,  Wilson J.D.,  Seabourn  B.W. Starch granule size distribution of hard red winter and hard red spring wheat: Its effects on mixing and breadmaking quality. J. Cereal Sci., 2009, 40: 98-105.
12. McIntosh  R.A.,  Yamazak  Y.,  Dubcovsky  J.,  Rogers  J.,  Morris C.,
Somers D.J.,  Appels R.,  Devos  K.M. Catalogue of gene symbols for wheat. 2008.
13. Chao  S.,  Dubcovsky  J.,  Dvorak  J.,  Luo  M.-C.,  Baenziger  S.P., 
Matnyazov  R.,  Clark  D.R.,  Talbert  L.E.,  Anderson J.A.,  Dreisigacker  S.,  Glover  K.,  Chen  J.,  Campbell  K.,  Bruckner  P.L.,  Rudd  J.C.,
Haley  S.,  Carver  B.F.,  Perry  S.,  Sorrells  M.E.,  Akhunov  E.D. Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics, 2010, 11: 727 (doi: 10.1186/1471-2164-11-727).
14. Bushuk W. Wheat breeding for end-product use. Proc. 5th Inter. Wheat Conference «Wheat: Prospects for global improvement». Ankara, Turkey, 1996: 203-211. 
15. Payne  P.I. Genetics of wheat storage protein and the effect of allelic variation on breadmaking quality. Ann. Rev. Plant Physiol., 1987, 38: 141-153.
16. Yamazaki  W.T.,  Briggle L.W. Components of test weight in soft wheat. Crop Sci., 1969, 9: 457-459.
17. Schuler S.F.,  Bacon  R.K.,  Finney  P.,  Gbur  E.E. Relationship of test weight and kernel properties to milling and baking quality in soft red winter wheat. Crop Sci., 1995, 35: 949-953.
18. Guttieri  M.J.,  Stark  J.C.,  O'Brien K.,  Souza E. Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Sci., 2001, 41: 327-335.
19. Farrer D.,  Weisz  R.,  Heiniger  R.,  Murphy  J.P.,  Pate M.H. Delayed harvest effect on soft red winter wheat in the southeastern USA. Agron. J., 2006, 98: 588-595.
20. Endo S.,  Okada  K.,  Nagao   S.,  D’Appolonia  B.L. Quality characteristics of hard red spring and winter wheats. I. Differentiation by reversed-phase high performance liquid chromatography and milling properties. Cereal Chem., 1990, 67: 480-485.
21. McGuire  C.F.,  Blackwood  L.G. End-use quality of Montana-grown hard red spring compared to hard red winter wheats. Can. J. Plant Sci., 1990, 70: 629-637.
22. Pshenitsa i otsenka ee kachestva /Pod redaktsiei N.P. Koz'minoi, L.N. Lyubarskogo [Wheat and Evaluation of Its Quality. N.P. Koz'mina, L.N. Lyubarskii (eds.)]. Moscow, 1968.
23. Carrera  A., Echenique  V.,  Zhang  W.,  Helguera  M.,  Manthey  F.,  Schrager  A.,  Picca  A.,  Cervigni  G.,  Dubcovsky J.A deletion at the Lpx-B1 locus is associated with low lipoxygenase activity and improved pasta color in durum wheat (Triticum turgidum ssp. durum). J. Cereal Sci., 2007, 45: 67-77.
24. Demeke  T.,  Morris  C.F.,  Campbell  K.G.,  King  G.E.,  Anderson  J.A.,  Chang  H.-G. Wheatpolyphenol oxidase: distribution and genetic mapping in three inbred line populations. Crop Sci., 2001, 41: 1750-1757.
25. Koz'mina  N.P.,  Kretovich  V.L. Biokhimiya zerna i produktov ego pererabotki [Biochemistry of Cereal Grain and Its Derivatives]. Moscow, 1950.
26. Krupnova O.V. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2009, 3: 13-23.
27. Shewry P.R.,  Halford N.G. Cereal seed storage proteins: structures, properties and role in grain utilization. J. Exp. Bot., 2002, 53: 947-958.
28. Pshenitsa i ee uluchshenie /Pod redaktsiei M.M. Yakubtsinera, N.P. Koz'minoi, L.N. Lyubarskogo [Wheat and Its Improvement. M.M. Yakubtsiner, N.P. Koz'mina, L.N. Lyubarskii (eds.)]. Moscow, 1970.
29. Bebyakin  V.M.,  Vinokurova  L.T. Doklady RASKHN, 2003, 4: 3-5.
30. Marushev  A.I. Kachestvo zerna pshenits Povolzh'ya [Grain Quality in Wheats of Volga Region]. Saratov, 1968.
31. Otteson  B.N.,  Mergoum  M.,  Ransom  J.K. Seeding rate and nitrogen management on milling and baking quality of hard red spring wheat genotypes. Crop Sci., 2008, 48: 749-755.
32. Souza  E.J.,  Martin  J.M.,  Guttieri  M.J.,  O'Brien  K.,  Habernicht  D.K.,  Lanning  S.P.,  Carlson  G.R.,  Talbert  L.E.. Influence of genotype, environment, and nitrogen management on spring wheat quality. Crop Sci., 2004, 44: 425-432.
33. Lookhart  G.L.,  Cox  T.S.,  Chung  O.K. Statistical analyses of gliadin reversed-phase high-performance liquid chromatography patterns of hard red spring and hard red winter wheat cultivars grown in a common environment: Classification indices. Cereal Chem., 1993, 70: 430-434.
34. Huebner  F.R.,  Nelsen  T.C.,  Bietz  J.A. Differences among gliadins from spring and winter wheat cultivars. Cereal Chem., 1995, 72: 341-343.
35. Dobrotvorskaya  T.V.,  Martynov  S.P. Genetika, 2011, 47(7): 905-919.
36. Krupnova  O.V. Vestnik RASKHN, 2009, 5: 46-48. 
37. Chen  F.,  He  Z.,  Chen  D.,  Zhang  C.,  Zhang  Y.,  Xia  X. Influence of puroindoline alleles on milling performance and qualities of Chinese noodles, steamed bread and pan bread in spring wheats. J. Cereal Sci., 2007, 45: 59-66.
28. Bhave  M.,  Morris  C.F. Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Mol. Biol., 2008, 66: 205-219.
39. Greffeuille  V.,  Abecassis  J.,  Rousset  M.,  Oury F.-X.,  Faye A.,  Helgouac’h  C.B.L.,  Lullien-Pellerin V.Grain characterization and milling behaviour of near-isogenic lines differing by hardness. Theor. Appl. Genet., 2006, 114: 1-12.
40. Abugalieva  A.,  Peña  R. Grain quality of spring and winter wheat of Kazakhstan. The Asian and Australasian Journal of Plant Science and Biotechnology, 2010, 4: 87-90.
41. Chung  O.K.,  Pomeranz  Y.,  Finney  K.F. Relation of polar lipid content to mixing requirement and loaf volume potential of hard red winter wheat flour. Cereal Chem., 1982, 59: 14-20.
42. Pomeranz  Y. Composition and functionality of wheat flour components. In: Wheat chemistry and technology. Vol. II /Y. Pomeranz (ed.). AACC International, St Paul, MN, 1988: 219-370 (цит. по ссылке 9).
43. Edwards  M.A.,  Osborn  B.G.,  Henry  R.J. Effect of endosperm starch granule size distribution on milling yield in hard wheat. J. Cereal Sci., 2008, 48: 180-192.
44. Stoddard F.L. Survey of starch particle-size distribution in wheat and related species. Cereal Chem., 1999, 76: 145-149.
45. Martin  J.M.,  Berg J.E.,  Fischer  A.M.,  Jukanti  A.K.,  Kephart  K.D., Kushnak  G.D.,  Nash  D.,  Bruckner P.L. Divergent selection for polyphenol oxidase and its influence on agronomic, milling, bread, and chinese raw noodle quality traits. Crop Sci., 2005, 45: 85-91.
46. Axford  D.W.E.,  McDermott  E.E.,  Redman D.G. Note on the sodium dodecyl sulfate test of breadmaking quality: Comparison with Pelshenke and Zeleny tests. Cereal Chem., 1979, 56: 582-583.
47. Mares  D.,  Mrva  K. Late-maturity α-amylase: low falling number in wheat in the absence of preharvest sprouting. J. Cereal Sci., 2008, 4: 6-17.
48. Krupnova  O.V.,  Sibikeev  S.N.,  Krupnov  V.A.,  Sovtsova  A.V,  Antonov  G.Yu. Sbornik nauchnykh trudov GNU NIISKH Yugo-Vostoka Rossel'khozakademii [Compilation of Sci. Works of the Research and Development Institute of Agriculture of the South-East of RAAS]. Saratov, 2009, 113-119.
49. Krupnov  V.A.,  Sibikeev  S.N.,  Krupnova  O.V. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2010, 3: 3-16.
50. Mares  D.,  Rathjen  J.,  Mrva  K.,  Cheong  J. Genetic and environmental control of dormancy in white-grained wheat (Triticum aestivum L.). Euphytica, 2009, 168: 311-318.
51. Mann  G.,  Diffey  S.,  Cullis  B.,  Azanza  F.,  Martin  D.,  Kelly  A.,  McIntyre  L.,  Schmidt  A.,  Ma  W.,  Nath  Z.,  Kutty  I.,  Leyne  P.E.,  Rampling  L.,  Quail  K.J.,  Morell  M.K. Genetic control of wheat quality: interactions between chromosomal regions determining protein content and composition, dough rheology, and sponge and dough baking properties. Theor. Appl. Genet., 2009, 118: 1519-1537.
52. Finney  K.F.,  Barmore  M.A. Loaf volume and protein content of hard winter and spring wheats. Cereal Chem., 1948, 25: 291-312.
53. Fardet  A. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutrition Research Reviews, 2010, 23: 65-134.
54. Slavin  J. Whole grains and digestive health. Cereal Chem., 2010, 87: 292-296.
55. Zhao  F.J.,  Su  Y.H.,  Dunham  S.J.,  Rakszegi  M.,  Bedo  Z.,  McGrath S.P.,  Shewry  P.R. Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J. Cereal Sci., 2009, 49: 290-295.
56. Jonnala  R.S.,  Irmak  S.,  MacRitchie  F.,  Bean  S.R. Phenolics in the bran of waxy wheat and triticale lines. J. Cereal Sci., 2010, 52: 509-515.
57. Kariluoto  S.,  Edelmann M.,  Piironen  V. Effects of environment and genotype on folate contents in wheat in the HEALTHGRAIN diversity screen. J. Agric. Food Chem., 2010, 58: 9324-9331.
58. Nurmi  T.,  Lampi  A.,  Nystrom  L.,  Piironen V. Effects of environment and genotype on phytosterols in wheat in the HEALTHGRAIN diversity screen. J. Agric. Food Chem., 2010, 58: 9314-9323.
59. Lampi  A.M.,  Nurmi  T.,  Piironen  V. Effects of the environment and genotype on tocopherols and tocotrienols in wheat in the HEALTHGRAIN diversity screen. Agric. Food Chem., 2010, 58: 9306-9313.
60. Krupnova  O.V. Kachestvo zerna yarovoi myagkoi pshenitsy s translokatsiyami ot sorodichei. Avtoreferat doktorskoi dissertatsii [Grain Quality in Spring Soft Wheat with Translocations from Related Species, Extended Abstract of Doctoral Sci. Dissertation]. Saratov, 2010.
61. Qi  P.F.,  Wei  Y.M.,  Ouellet  T.,  Chen  Q.,  Tan  X.,  Zheng  Y.L. The g-gliadin multigene family in common wheat (Triticum aestivum) and its closely related species. BMC Genomics, 2009, 10: 168 (doi: 10.1186/1471-2164-10-168).
62. Stoddard  F.L.,  Sarker  R. Characterization of starch in Aegilops species. Cereal Chem., 2000, 77: 445-447.
63. Howard  T.,  Rejab  N.A.,  Griffiths  S.,  Leigh  F.,  Leverington-
Waite  M.,  Simmonds  J.,  Uauy  C.,  Trafford  K. Identification of a major QTL controlling the content of B-type starch granules in Aegilops. J. Exp. Bot., 2011, 62(6): 2217-2228.
64. Weightman  R.M.,  Millar  S.,  Alava  J.,  Foulkes  M.J.,  Fish  L.,  Snape  J.W. Effects of drought and the presence of the 1BL/1RS translocation on grain vitreosity, hardness and protein content in winter wheat. J. Cereal Sci., 2008, 47: 457-468.
65. Huang  X.-Q.,  Wolf  M.,  Ganal  M.W.,  Orford  S.R.,  Koebner  M.D,  Röder  M.S. Did modern plant breeding lead to genetic erosion in European winter wheat varieties? Crop Sci., 2007, 47: 343-349.
66. Kozub  N.A.,  Sozinov  I.A.,  Sobko  T.A.,  Sozinov  A.A.Variation at storage protein loci in winter common wheat cultivars of the Central Forest-Steppe of Ukraine. Cyt. Genetics, 2009, 43: 69-77.
67. Krupnova  O.V.,  Druzhin  A.E.,  Voronina  S.A.,  Krupnov  V.A. Vestnik VOGiS, 2010, 14(4): 641-646.
68. Krupnov  V.A.,  Sibikeev  S.N.,  Krupnova  O.V.,  Voronina  S.A.,  Druzhin A.E. Agrarnyi vestnik Yugo-Vostoka, 2010, 1(4): 11-14.
69. Inomata  N. Wheat allergy. Curr. Opin. Allergy Clin. Immunol., 2009, 9: 238-244.
70. Morita  E.,  Matsuo  H.,  Chinuki  Y.,  Takahashi  H.,  Dahlström  J., Tanaka  A. Food-dependent exercise-induced anaphylaxis — importance of omega-5 gliadin and HMW-glutenin as causative antigens for wheat-dependent exercise-induced anaphylaxis. Allergol Int., 2009, 58: 493-498.
71. Caputo  I.,  Lepretti  M.,  Martucciello  S.,  Esposito  C. Enzymatic strategies to detoxify gluten: implications for celiac disease. Enzyme Res., 2010, Article ID 174354, 9 pages (doi: 10.4061/2010/174354).
72. Van  Herpen T.W.J.M.,  Goryunova  S.V.,  Van  der  Schoot  J.,  Mitreva  M.,  Salentijn  E.,  Vorst  O.,  Schenk  M.F.,  Van  Veelen  P.A.,  Koning  F.,  Van   Soes t  L.J.M.,  Vosman  B.,  Bosch  D.,  Hamer  R.J.,  Gilissen  L.J.W.J.,  Smulders  M.J.M. Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics, 2006, 7: 1-13.
73. Stepniak  D.,  Wiesner  M.,  Ru  A.H.,  Moustakas  A.K.,  Drijfhout  J.W.,  Papadopoulos  G.K.,  Veelen  P.A.,  Koning  F. Large-scale characterization of natural ligands explains the unique gluten-binding properties of HLA-DQ2. J. Immunol., 2008, 180: 3268-3278.
74. Van   den  Broeck  H.C.,  De  Jong  H.C.,  Salentijn  E.M.,  Dekking  L.,  Bosch  D.,  Hamer R.J.,  Gilissen L.J.,  van  der  Meer  I.M.,  Smulders  M.J. Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: wheat breeding may have contributed to increased prevalence of celiac disease. Theor. Appl. Genet., 2010, 121: 1527-1539.
75. Dupont  F.M.,  Hurkman  W.J.,  Vensel  W.H.,  Tanaka  C.,  Kothari  K.M.,  Chung  O.K.,  Altenbach  S.B. Protein accumulation and composition in wheat grains: effects of mineral nutrients and high temperature. Eur. J. Agron., 2006, 25: 96-107.