doi: 10.15389/agrobiology.2013.1.68eng

UDC 633.11:631.527:632.4:577.2

INVESTIGATION OF INTERMEDIARY WHEAT-AGROPYRON HYBRIDS ON RESISTANCE TO LEAF RUST

P.Yu. Krupin1, M.G. Divashuk1, V.I. Belov2, A.I. Zhemchuzhina3, E.D. Kovalenko3, V.P. Upelniek2, 4, G.I. Karlov1

1Center for Molecular Biotechnology of K.A. Timiryazev Russian State Agrarian University-Moscow Agrarian Academy,
ul. Timiryazevskaya, Moscow, 127550 Russia,
e-mail: pavelkroupin@gmail.com, divashuk@gmail.com, karlov@timacad.ru;
2N.V. Tsytsin Central Botanical Garden , Russian Academy of Sciences,
31, ul. Botanicheskaya, Moscow, 127276 Russia,
e-mail: nex_snegiri@mail.ru;
3All-Russian Research Institute of Phytopathology, Russian Academy of Agricultural Sciences,
Bolshye Viazemy, Odintsovo Region, Moscow Province, 143050 Russia,
e-mail: zhemchuzhina@vniif.ru, kovalenko@vniif.ru
4N.I. Vavilov Institute of General Genetics , Russian Academy of Sciences,
3, ul. Gubkina, GSP-1, Moscow 119991, Russia,
e-mail: vla-upelniek@yandex.ru

Received August 19, 2012



The estimation was made for 18 variants of octaploid winter wheat-Аgropyron hybrids (WAH) (2n = 56) on juvenile resistance to 10 isolates of leaf rust. By the use of molecular markers the presence of different subgenomes of Thinopyrum sp. in investigated variants was shown. In variants of WAH the authors revealed a polymorphism on resistance to test-isolates of leaf rust, which may be due to various number of agropyron chromosomes in genome. The authors discussed the possibility of using studied WAH in breeding on resistance to leaf rust and the role of resistance in improvement of economical-valued determinants of WAH in breeding process.

Keywords: wheat, wheat-Thinopyrum hybrids, leaf rust, resistance genes.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

1. McIntosh R.A., Wellings C.R., Park R.F. Wheat rusts: An atlas of resistance genes. Melbourne, Australia: Australian Commonwealth Scientific and Research Organization (CSIRO), 1995.
2. McIntosh R.A. From Farrer to the Australian cereal rust control program. Austr. J. Agr. Res., 2007, 58: 550-557.
3. Tyryshkin L.G. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology],  2010, 3: 76-81.
4. Li H., Wang X. Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J. Genet. Genomics, 2009, 36: 557-565.
5. Bhardwaj S.C., Prashar M., Kumar S., Jain S.K., Datta D. Lr19 resistance in wheat becomes susceptible to Puccinia triticina in India. Plant Dis., 2005, 89: 1360.
6. Elyasi-Gomari S., Panteleev V.K. Virulence polymorphism of Puccinia recondita f. sp. tritici and effectiveness of Lr genes for leaf rust resistance of wheat in Ukraine. Plant Dis., 2006, 90: 853-857.
7. Morgounov A., Ablova I., Babayants O., Babayants L., Bespalova L.,
Khudokormov Zh., Litvinenko N., Shamanin V., Syukov V. Genetic protection of wheat from rusts and development of resistant varieties in Russia and Ukraine. Euphytica, 2011, 179: 297-311.
8. Krupin P.Yu., Divashuk M.G., Belov V.I., Semenova E.V., Artamo-
nov V.D., Karlov G.I. Estestvennye i Tekhnicheskie Nauki, 2011, 6: 123-126.
9. Kovalenko E.D., Makarov A.A., Zhemchuzhina A.I., Kolomiets T.M., Solomatin D.A., Kiseleva M.I. Materialy Vserossiiskogo soveshchaniya «Sovremennye sistemy zashchity rastenii ot boleznei i perspektivy ispol'zovaniya dostizhenii biotekhnologii igennoi inzhenerii» [Proc. All-Russia Conference «Modern Systems of Crop Protection from Diseases and Prospects for Practical Use of the Achievements of Biotechnology and Gene Technology»]. Golitsino, 2003: 52-54.
10. Belov V.I., Ivanova L.P. Otdalennaya gibridizatsiya. Rezul'taty issledovaniya /Pod redaktsiei V.I. Semenova [Distant Hybridization. Results of Investigation. V.I. Semenov (ed.)]. M., 2001: 166-177.
11. Bernatzky R., Tanksley S.D. Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics, 1986, 112: 887-898.
12. Zhang X., Dong Y., Wang R.R. Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum × Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD. Genome, 1996, 39: 1062-1071.
13. Li H., Wang X. Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J. Genet. Genomics, 2009, 36: 557-565.
14. Wang R.R., Wei J.Z. Variations of two repetitive DNA sequences in several Triticeae genomes revealed by polymerase chain reaction and sequencing. Genome, 1995, 38: 1221-1229.
15. Kiseleva M.I., Kovalenko E.D., Zhemchuzhina A.I., Kurkova N.N. AGRO XXI, 2004-2005, 7-12: 25-29.
16. Krupin P.Yu., Divashuk M.G., Belov V.I., Glukhova L.I., Aleksand-
rov O.S., Karlov G.I. Genetika, 2011, 47: 492-498.
17. Fedak G., Han F. Characterization of derivatives from wheat—Thinopyrum wide crosses. Cytogenet. Genome Res., 2005, 109: 360-367.
18. Banks P.M., Xu S.J., Wang R.R., Larkin P.J. Varying chromosome composition of 56-chromosome wheat × Thinopyrum intermedium partial amphiploids. Genome, 1993, 36: 207-215.

back